Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897510145> ?p ?o ?g. }
- W2897510145 endingPage "239" @default.
- W2897510145 startingPage "225" @default.
- W2897510145 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 82:225-239 (2019) - DOI: https://doi.org/10.3354/ame01891 Drivers of protistan community autotrophy and heterotrophy in chemically stratified Antarctic lakes Wei Li1,*, Jenna Dolhi-Binder2, Zev E. Cariani3, Rachael M. Morgan-Kiss3 1Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, Montana 59717, USA 2Department of Biology and Toxicology, Ashland University, Ashland, Ohio 44805, USA 3Department of Microbiology, Miami University, Oxford, Ohio 45056, USA *Corresponding author: wei.li02@montana.edu ABSTRACT: Single-celled, eukaryotic microorganisms, known as protists, are responsible for 2 important, yet opposing, metabolic activities within aquatic food webs. They are major primary producers and highly active predators in marine and fresh water systems. While genomics has accelerated in recent years for this taxonomically diverse group, our understanding of the metabolic capabilities of most protists remains limited. It is also poorly understood how protist trophic mode is affected by biotic and abiotic factors, and therefore it is difficult to predict how events such as global climate change will affect the balance between autotrophic and heterotrophic activities in protist communities. To address open questions regarding how protist metabolic versatility is influenced by their environment, we characterized the potential for carbon fixation versus organic carbon degradation using enzymatic assays (RubisCO and β-D-glucosaminidase, respectively) within the water columns of ice-covered lakes in McMurdo Dry Valleys (MDV), Antarctica. Steep physical and chemical gradients in the water columns, microorganism domination and minimal allochthonous inputs makes the MDV lakes uniquely suited to investigate environment-microbe interactions. Spatial trends in RubisCO and β-D-glucosaminidase activities were lake-specific and vertically stratified within the water columns. Moreover, bottom-up drivers controlling the activity of C-fixation vs. organic C-degradation among the MDV protist communities were distinct between the upper photic vs. the deep, aphotic zones. We conclude that differential controls over major C-cycling enzymes have important implications on the influence of environmental change on the carbon and nutrient cycles in the MDV lakes. KEY WORDS: Aquatic protists · Autotrophy · Heterotrophy · β-D-glucosaminidase · RubisCO · McMurdo Dry Valleys · Antarctic lakes Full text in pdf format Supplementary material NextCite this article as: Li W, Dolhi-Binder J, Cariani ZE, Morgan-Kiss RM (2019) Drivers of protistan community autotrophy and heterotrophy in chemically stratified Antarctic lakes. Aquat Microb Ecol 82:225-239. https://doi.org/10.3354/ame01891 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 82, No. 3. Online publication date: January 21, 2019 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2019 Inter-Research." @default.
- W2897510145 created "2018-10-26" @default.
- W2897510145 creator A5000432967 @default.
- W2897510145 creator A5013040582 @default.
- W2897510145 creator A5035634155 @default.
- W2897510145 creator A5072089941 @default.
- W2897510145 date "2019-01-21" @default.
- W2897510145 modified "2023-10-16" @default.
- W2897510145 title "Drivers of protistan community autotrophy and heterotrophy in chemically stratified Antarctic lakes" @default.
- W2897510145 cites W1482721597 @default.
- W2897510145 cites W1506480265 @default.
- W2897510145 cites W1541243148 @default.
- W2897510145 cites W1550153895 @default.
- W2897510145 cites W1557189601 @default.
- W2897510145 cites W1918785450 @default.
- W2897510145 cites W1963298921 @default.
- W2897510145 cites W1978140435 @default.
- W2897510145 cites W1978247849 @default.
- W2897510145 cites W1984283607 @default.
- W2897510145 cites W1998492888 @default.
- W2897510145 cites W2000250052 @default.
- W2897510145 cites W2001906942 @default.
- W2897510145 cites W2004665870 @default.
- W2897510145 cites W2004841729 @default.
- W2897510145 cites W2008912660 @default.
- W2897510145 cites W2011300036 @default.
- W2897510145 cites W2028038676 @default.
- W2897510145 cites W2029274687 @default.
- W2897510145 cites W2030225105 @default.
- W2897510145 cites W2037952709 @default.
- W2897510145 cites W2039985061 @default.
- W2897510145 cites W2042442836 @default.
- W2897510145 cites W2047596238 @default.
- W2897510145 cites W2047805669 @default.
- W2897510145 cites W2055896183 @default.
- W2897510145 cites W2057858617 @default.
- W2897510145 cites W2058496690 @default.
- W2897510145 cites W2058540316 @default.
- W2897510145 cites W2065112889 @default.
- W2897510145 cites W2073698751 @default.
- W2897510145 cites W2088005831 @default.
- W2897510145 cites W2088296130 @default.
- W2897510145 cites W2093959945 @default.
- W2897510145 cites W2096467503 @default.
- W2897510145 cites W2098482917 @default.
- W2897510145 cites W2099175472 @default.
- W2897510145 cites W2100679964 @default.
- W2897510145 cites W2111842672 @default.
- W2897510145 cites W2112242822 @default.
- W2897510145 cites W2114958936 @default.
- W2897510145 cites W2115386852 @default.
- W2897510145 cites W2115737431 @default.
- W2897510145 cites W2118812765 @default.
- W2897510145 cites W2125131740 @default.
- W2897510145 cites W2129591755 @default.
- W2897510145 cites W2132430491 @default.
- W2897510145 cites W2134886581 @default.
- W2897510145 cites W2139911650 @default.
- W2897510145 cites W2142635246 @default.
- W2897510145 cites W2144208214 @default.
- W2897510145 cites W2148409821 @default.
- W2897510145 cites W2155887987 @default.
- W2897510145 cites W2159096177 @default.
- W2897510145 cites W2160810913 @default.
- W2897510145 cites W2187461836 @default.
- W2897510145 cites W2274678362 @default.
- W2897510145 cites W2340855563 @default.
- W2897510145 cites W2514516444 @default.
- W2897510145 cites W2530757791 @default.
- W2897510145 cites W2530944458 @default.
- W2897510145 cites W2767558754 @default.
- W2897510145 cites W4247937894 @default.
- W2897510145 cites W4248054778 @default.
- W2897510145 cites W4248814778 @default.
- W2897510145 cites W4293247451 @default.
- W2897510145 doi "https://doi.org/10.3354/ame01891" @default.
- W2897510145 hasPublicationYear "2019" @default.
- W2897510145 type Work @default.
- W2897510145 sameAs 2897510145 @default.
- W2897510145 citedByCount "4" @default.
- W2897510145 countsByYear W28975101452019 @default.
- W2897510145 countsByYear W28975101452021 @default.
- W2897510145 countsByYear W28975101452022 @default.
- W2897510145 crossrefType "journal-article" @default.
- W2897510145 hasAuthorship W2897510145A5000432967 @default.
- W2897510145 hasAuthorship W2897510145A5013040582 @default.
- W2897510145 hasAuthorship W2897510145A5035634155 @default.
- W2897510145 hasAuthorship W2897510145A5072089941 @default.
- W2897510145 hasConcept C104317684 @default.
- W2897510145 hasConcept C104647666 @default.
- W2897510145 hasConcept C110872660 @default.
- W2897510145 hasConcept C111368507 @default.
- W2897510145 hasConcept C127313418 @default.
- W2897510145 hasConcept C142796444 @default.
- W2897510145 hasConcept C18903297 @default.
- W2897510145 hasConcept C2778330419 @default.
- W2897510145 hasConcept C2780892065 @default.
- W2897510145 hasConcept C35195898 @default.