Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897513253> ?p ?o ?g. }
- W2897513253 endingPage "180" @default.
- W2897513253 startingPage "170" @default.
- W2897513253 abstract "Ultramafic hosted hydrothermal deposits are ubiquitous along slow-spreading ridges such as the Mid-Atlantic Ridge (MAR; e.g., Ashadzé, Rainbow, Lost City) where they exert a major control on the cycling of economically important elements (e.g., Zn, Cu, Ni). However, the origin of metal mobility in these environments remains unclear. Here we use Zn (δ66Zn), Cu (δ65Cu) and Fe (δ56Fe) stable isotopes to explore the mobility of metals during (1) the serpentinization of the Rainbow massif basement in a seawater dominated system at low temperature (<250 °C) and (2) the subsequent high temperature (>350 °C) mineralization of serpentinites through seawater-derived fluids that interacted with gabbro prior to interacting with serpentinite near hydrothermal sites (stockworks). The Rainbow samples display among the largest range of isotopic variations ever reported for ultramafic rocks (−0.10‰ ≤ δ66Zn ≤ +0.47‰; −0.93‰ ≤ δ65Cu ≤ +0.24‰; −0.15‰ ≤ δ56Fe ≤ +0.25‰). These variations reflect a two-stage process. (1) Serpentinization of the ultramafic basement is accompanied by a decrease in Zn (26–41 ppm) and Cu (1–13 ppm) concentrations and an increase of δ66Zn (+0.30–+0.47‰) in peridotites relative to primitive mantle (Zn ∼ 55 ppm, Cu ∼ 20 ppm, δ66Zn ∼ +0.16‰). Striking correlations between δ66Zn and indices of serpentinization (LOI and Fe/3+ΣFe) show preferential leaching of isotopically light Zn by fluids during the serpentinization of the massif. This isotopic fractionation is controlled by the dissolution of both mantle sulfides and/or spinels and Zn complexation with chlorine in fluids. At this stage, Fe seems to be immobile as attested by correlations between δ56Fe and indices of peridotite fertility (e.g., Al2O3/SiO2). (2) The mineralization of serpentinites near the Rainbow stockwork is accompanied by an increase in Fe/3+ΣFe (>0.7), FeO (up to 19.8 wt%), Zn (≫50 ppm) and Cu (≫20 ppm) concentrations. The δ66Zn and δ65Cu values progressively decrease with indices of serpentinite mineralization (e.g., Zn, Cu, Fe/3+ΣFe), while several samples display abnormally high δ56Fe (up to 0.25‰) relative to primitive mantle (δ56Fe ∼ 0.025‰), suggesting a high mobility of Zn, Cu and Fe in high temperature hydrothermal fluids. These isotopic fractionations can be explained by the local oxidation of sulfur bearing fluids in contact with seawater. This process enhances metal precipitation as well as the formation of Fe3+-bearing phases, such as magnetite, beneath the stockwork, explaining the presence of magnetic anomalies below the Rainbow hydrothermal field. Our study shows that the mobility of metals in hydrothermal fluids can be enhanced by both peridotite interaction with seawater or with fluid that interacted with deeper mafic bodies and then flowed to the surface. These processes may generate hydrothermal deposits with distinct metal signatures." @default.
- W2897513253 created "2018-10-26" @default.
- W2897513253 creator A5025906433 @default.
- W2897513253 creator A5046244153 @default.
- W2897513253 creator A5053075814 @default.
- W2897513253 creator A5064434925 @default.
- W2897513253 creator A5071655750 @default.
- W2897513253 creator A5088213144 @default.
- W2897513253 date "2018-12-01" @default.
- W2897513253 modified "2023-10-02" @default.
- W2897513253 title "Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36°14′N)" @default.
- W2897513253 cites W1409281717 @default.
- W2897513253 cites W1489938111 @default.
- W2897513253 cites W1544405571 @default.
- W2897513253 cites W1966467864 @default.
- W2897513253 cites W1969594792 @default.
- W2897513253 cites W1969859799 @default.
- W2897513253 cites W1973000383 @default.
- W2897513253 cites W1974709242 @default.
- W2897513253 cites W1991250009 @default.
- W2897513253 cites W1991351712 @default.
- W2897513253 cites W1994679181 @default.
- W2897513253 cites W2009231542 @default.
- W2897513253 cites W2013587479 @default.
- W2897513253 cites W2013634682 @default.
- W2897513253 cites W2017264474 @default.
- W2897513253 cites W2027143279 @default.
- W2897513253 cites W2028603122 @default.
- W2897513253 cites W2028917031 @default.
- W2897513253 cites W2031665411 @default.
- W2897513253 cites W2033804331 @default.
- W2897513253 cites W2039066042 @default.
- W2897513253 cites W2056066639 @default.
- W2897513253 cites W2057246781 @default.
- W2897513253 cites W2082736805 @default.
- W2897513253 cites W2085234182 @default.
- W2897513253 cites W2087064831 @default.
- W2897513253 cites W2091065826 @default.
- W2897513253 cites W2102484660 @default.
- W2897513253 cites W2105426908 @default.
- W2897513253 cites W2107109600 @default.
- W2897513253 cites W2107485853 @default.
- W2897513253 cites W2117807252 @default.
- W2897513253 cites W2126319304 @default.
- W2897513253 cites W2147037889 @default.
- W2897513253 cites W2147276470 @default.
- W2897513253 cites W2152915196 @default.
- W2897513253 cites W2162035883 @default.
- W2897513253 cites W2162775564 @default.
- W2897513253 cites W2170918707 @default.
- W2897513253 cites W2304896820 @default.
- W2897513253 cites W2314245758 @default.
- W2897513253 cites W2328830054 @default.
- W2897513253 cites W2472999209 @default.
- W2897513253 cites W2478962634 @default.
- W2897513253 cites W2520557910 @default.
- W2897513253 cites W2556678425 @default.
- W2897513253 cites W2558458993 @default.
- W2897513253 cites W2565513496 @default.
- W2897513253 cites W2585007529 @default.
- W2897513253 cites W2596006982 @default.
- W2897513253 cites W2599064859 @default.
- W2897513253 cites W2734519857 @default.
- W2897513253 cites W2744613729 @default.
- W2897513253 cites W2771739798 @default.
- W2897513253 cites W2772963007 @default.
- W2897513253 cites W4236204059 @default.
- W2897513253 doi "https://doi.org/10.1016/j.epsl.2018.09.009" @default.
- W2897513253 hasPublicationYear "2018" @default.
- W2897513253 type Work @default.
- W2897513253 sameAs 2897513253 @default.
- W2897513253 citedByCount "26" @default.
- W2897513253 countsByYear W28975132532019 @default.
- W2897513253 countsByYear W28975132532020 @default.
- W2897513253 countsByYear W28975132532021 @default.
- W2897513253 countsByYear W28975132532022 @default.
- W2897513253 countsByYear W28975132532023 @default.
- W2897513253 crossrefType "journal-article" @default.
- W2897513253 hasAuthorship W2897513253A5025906433 @default.
- W2897513253 hasAuthorship W2897513253A5046244153 @default.
- W2897513253 hasAuthorship W2897513253A5053075814 @default.
- W2897513253 hasAuthorship W2897513253A5064434925 @default.
- W2897513253 hasAuthorship W2897513253A5071655750 @default.
- W2897513253 hasAuthorship W2897513253A5088213144 @default.
- W2897513253 hasBestOaLocation W28975132535 @default.
- W2897513253 hasConcept C111368507 @default.
- W2897513253 hasConcept C111696902 @default.
- W2897513253 hasConcept C127313418 @default.
- W2897513253 hasConcept C151730666 @default.
- W2897513253 hasConcept C156622251 @default.
- W2897513253 hasConcept C159390177 @default.
- W2897513253 hasConcept C159750122 @default.
- W2897513253 hasConcept C160776313 @default.
- W2897513253 hasConcept C17409809 @default.
- W2897513253 hasConcept C178790620 @default.
- W2897513253 hasConcept C185592680 @default.
- W2897513253 hasConcept C195081551 @default.
- W2897513253 hasConcept C197248824 @default.