Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897519621> ?p ?o ?g. }
- W2897519621 endingPage "659" @default.
- W2897519621 startingPage "643" @default.
- W2897519621 abstract "Summary Learning an individualized dose rule in personalized medicine is a challenging statistical problem. Existing methods often suffer from the curse of dimensionality, especially when the decision function is estimated nonparametrically. To tackle this problem, we propose a dimension reduction framework that effectively reduces the estimation to an optimization on a lower-dimensional subspace of the covariates. We exploit the fact that the individualized dose rule can be defined in a subspace spanned by a few linear combinations of the covariates to obtain a more parsimonious model. Owing to direct maximization of the value function, the proposed framework does not require the inverse probability of the propensity score under observational studies. This distinguishes our approach from the outcome-weighted learning framework, which also solves decision rules directly. Within the same framework, we further propose a pseudo-direct learning approach that focuses more on estimating the dimensionality-reduced subspace of the treatment outcome. Parameters in both approaches can be estimated efficiently using an orthogonality-constrained optimization algorithm on the Stiefel manifold. Under mild regularity assumptions, results on the asymptotic normality of the proposed estimators are established. We also derive the consistency and convergence rate of the value function under the estimated optimal dose rule. We evaluate the performance of the proposed approaches through extensive simulation studies and analysis of a pharmacogenetic dataset." @default.
- W2897519621 created "2018-10-26" @default.
- W2897519621 creator A5028993237 @default.
- W2897519621 creator A5056322441 @default.
- W2897519621 creator A5076762447 @default.
- W2897519621 date "2020-10-20" @default.
- W2897519621 modified "2023-09-26" @default.
- W2897519621 title "A parsimonious personalized dose-finding model via dimension reduction" @default.
- W2897519621 cites W1515782956 @default.
- W2897519621 cites W1520595697 @default.
- W2897519621 cites W1750038386 @default.
- W2897519621 cites W1807984730 @default.
- W2897519621 cites W1963874316 @default.
- W2897519621 cites W1977085253 @default.
- W2897519621 cites W1984547044 @default.
- W2897519621 cites W1994857208 @default.
- W2897519621 cites W1996144317 @default.
- W2897519621 cites W2003336670 @default.
- W2897519621 cites W2018472295 @default.
- W2897519621 cites W2020160576 @default.
- W2897519621 cites W2022215192 @default.
- W2897519621 cites W2024016305 @default.
- W2897519621 cites W2033148801 @default.
- W2897519621 cites W2038146650 @default.
- W2897519621 cites W2051037695 @default.
- W2897519621 cites W2074278088 @default.
- W2897519621 cites W2080981338 @default.
- W2897519621 cites W2082299845 @default.
- W2897519621 cites W2086802962 @default.
- W2897519621 cites W2086953401 @default.
- W2897519621 cites W2095296627 @default.
- W2897519621 cites W2097360283 @default.
- W2897519621 cites W2106298710 @default.
- W2897519621 cites W2106972824 @default.
- W2897519621 cites W2108143085 @default.
- W2897519621 cites W2132917208 @default.
- W2897519621 cites W2137370054 @default.
- W2897519621 cites W2140435154 @default.
- W2897519621 cites W2152101488 @default.
- W2897519621 cites W2155796958 @default.
- W2897519621 cites W2156682402 @default.
- W2897519621 cites W2163490846 @default.
- W2897519621 cites W2163590988 @default.
- W2897519621 cites W2165867286 @default.
- W2897519621 cites W2240609664 @default.
- W2897519621 cites W2404401223 @default.
- W2897519621 cites W2438485848 @default.
- W2897519621 cites W2496119153 @default.
- W2897519621 cites W2527945426 @default.
- W2897519621 cites W2536525504 @default.
- W2897519621 cites W2541641452 @default.
- W2897519621 cites W2609495673 @default.
- W2897519621 cites W2807015404 @default.
- W2897519621 cites W2911964244 @default.
- W2897519621 cites W2946211860 @default.
- W2897519621 cites W2951715671 @default.
- W2897519621 cites W2954868363 @default.
- W2897519621 cites W3106017199 @default.
- W2897519621 cites W3123436326 @default.
- W2897519621 cites W4239510810 @default.
- W2897519621 cites W4248112284 @default.
- W2897519621 cites W4294541781 @default.
- W2897519621 doi "https://doi.org/10.1093/biomet/asaa087" @default.
- W2897519621 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8514170" @default.
- W2897519621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34658383" @default.
- W2897519621 hasPublicationYear "2020" @default.
- W2897519621 type Work @default.
- W2897519621 sameAs 2897519621 @default.
- W2897519621 citedByCount "5" @default.
- W2897519621 countsByYear W28975196212019 @default.
- W2897519621 countsByYear W28975196212020 @default.
- W2897519621 countsByYear W28975196212021 @default.
- W2897519621 countsByYear W28975196212022 @default.
- W2897519621 crossrefType "journal-article" @default.
- W2897519621 hasAuthorship W2897519621A5028993237 @default.
- W2897519621 hasAuthorship W2897519621A5056322441 @default.
- W2897519621 hasAuthorship W2897519621A5076762447 @default.
- W2897519621 hasBestOaLocation W28975196212 @default.
- W2897519621 hasConcept C105795698 @default.
- W2897519621 hasConcept C111030470 @default.
- W2897519621 hasConcept C119043178 @default.
- W2897519621 hasConcept C119857082 @default.
- W2897519621 hasConcept C126255220 @default.
- W2897519621 hasConcept C134306372 @default.
- W2897519621 hasConcept C185429906 @default.
- W2897519621 hasConcept C32834561 @default.
- W2897519621 hasConcept C33923547 @default.
- W2897519621 hasConcept C41008148 @default.
- W2897519621 hasConcept C70518039 @default.
- W2897519621 hasConceptScore W2897519621C105795698 @default.
- W2897519621 hasConceptScore W2897519621C111030470 @default.
- W2897519621 hasConceptScore W2897519621C119043178 @default.
- W2897519621 hasConceptScore W2897519621C119857082 @default.
- W2897519621 hasConceptScore W2897519621C126255220 @default.
- W2897519621 hasConceptScore W2897519621C134306372 @default.
- W2897519621 hasConceptScore W2897519621C185429906 @default.
- W2897519621 hasConceptScore W2897519621C32834561 @default.
- W2897519621 hasConceptScore W2897519621C33923547 @default.