Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897524142> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2897524142 abstract "In the context of music production, distortion effects are mainly used for aesthetic reasons and are usually applied to electric musical instruments. Most existing methods for nonlinear modeling are often either simplified or optimized to a very specific circuit. In this work, we investigate deep learning architectures for audio processing and we aim to find a general purpose end-to-end deep neural network to perform modeling of nonlinear audio effects. We show the network modeling various nonlinearities and we discuss the generalization capabilities among different instruments." @default.
- W2897524142 created "2018-10-26" @default.
- W2897524142 creator A5003618864 @default.
- W2897524142 creator A5060851397 @default.
- W2897524142 date "2019-05-01" @default.
- W2897524142 modified "2023-10-16" @default.
- W2897524142 title "Modeling Nonlinear Audio Effects with End-to-end Deep Neural Networks" @default.
- W2897524142 cites W1970001848 @default.
- W2897524142 cites W2026061145 @default.
- W2897524142 cites W2059652044 @default.
- W2897524142 cites W2076528530 @default.
- W2897524142 cites W2103525130 @default.
- W2897524142 cites W2142852645 @default.
- W2897524142 cites W2145415360 @default.
- W2897524142 cites W2507109542 @default.
- W2897524142 cites W4212964046 @default.
- W2897524142 doi "https://doi.org/10.1109/icassp.2019.8683529" @default.
- W2897524142 hasPublicationYear "2019" @default.
- W2897524142 type Work @default.
- W2897524142 sameAs 2897524142 @default.
- W2897524142 citedByCount "15" @default.
- W2897524142 countsByYear W28975241422019 @default.
- W2897524142 countsByYear W28975241422020 @default.
- W2897524142 countsByYear W28975241422021 @default.
- W2897524142 countsByYear W28975241422022 @default.
- W2897524142 countsByYear W28975241422023 @default.
- W2897524142 crossrefType "proceedings-article" @default.
- W2897524142 hasAuthorship W2897524142A5003618864 @default.
- W2897524142 hasAuthorship W2897524142A5060851397 @default.
- W2897524142 hasBestOaLocation W28975241422 @default.
- W2897524142 hasConcept C121332964 @default.
- W2897524142 hasConcept C154945302 @default.
- W2897524142 hasConcept C158622935 @default.
- W2897524142 hasConcept C28490314 @default.
- W2897524142 hasConcept C41008148 @default.
- W2897524142 hasConcept C50644808 @default.
- W2897524142 hasConcept C62520636 @default.
- W2897524142 hasConcept C74296488 @default.
- W2897524142 hasConceptScore W2897524142C121332964 @default.
- W2897524142 hasConceptScore W2897524142C154945302 @default.
- W2897524142 hasConceptScore W2897524142C158622935 @default.
- W2897524142 hasConceptScore W2897524142C28490314 @default.
- W2897524142 hasConceptScore W2897524142C41008148 @default.
- W2897524142 hasConceptScore W2897524142C50644808 @default.
- W2897524142 hasConceptScore W2897524142C62520636 @default.
- W2897524142 hasConceptScore W2897524142C74296488 @default.
- W2897524142 hasLocation W28975241421 @default.
- W2897524142 hasLocation W28975241422 @default.
- W2897524142 hasLocation W28975241423 @default.
- W2897524142 hasOpenAccess W2897524142 @default.
- W2897524142 hasPrimaryLocation W28975241421 @default.
- W2897524142 hasRelatedWork W1967882366 @default.
- W2897524142 hasRelatedWork W2368432489 @default.
- W2897524142 hasRelatedWork W2368779261 @default.
- W2897524142 hasRelatedWork W2371928941 @default.
- W2897524142 hasRelatedWork W2386387936 @default.
- W2897524142 hasRelatedWork W2392808951 @default.
- W2897524142 hasRelatedWork W2794438528 @default.
- W2897524142 hasRelatedWork W2893763841 @default.
- W2897524142 hasRelatedWork W2899217644 @default.
- W2897524142 hasRelatedWork W3107474891 @default.
- W2897524142 isParatext "false" @default.
- W2897524142 isRetracted "false" @default.
- W2897524142 magId "2897524142" @default.
- W2897524142 workType "article" @default.