Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897533196> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2897533196 endingPage "S120" @default.
- W2897533196 startingPage "S119" @default.
- W2897533196 abstract "The physician orders for external beam radiation therapy (EBRT) are associated with top-level treatment decision parameters including prescription dose, number of treatment fractions, treatment modality, treatment positioning, image guidance, etc. Physician order errors manifest as wrong values of individual parameters or logical inconsistencies between multiple parameters, which are difficult to detect even to human experts without going through many data and documentations. The purpose of this work is to investigate an association rule based approach to error detection in physician orders. The goal is to catch those errors earlier so to avoid the costly re-simulation and re-planning. Clinical physician orders for patients who received EBRT treatments from 2008 to 2017 at author’s institution. A total of 3059 individual single-prescription orders for nine disease sites – brain, breast, lung, pelvic, pelvis, prostate, spine, TBI, extremely – were acquired. Each order includes disease attributes and prescription parameters. Seven disease attributes were considered as conditions - site, tumor stage, nodal stage, metastatic stage, intent, laterality and previous treatment. Errors were detected on the four prescription parameters - total dose, fractions, technique and modality. The a priori algorithm was employed to extract frequent item sets from the historical physician orders. The association rules were generated by arranging items in each frequent item set as antecedent items and consequent items. The active association rules were selected according to their support and confident scores. The error detection tool raises an error flag if a new physician order breaks any active association rules. 10 percent of physician orders were randomly chosen and errors (wrong values in prescription parameters) were added manually for testing the performance of the method. A total of 257 active association rules were selected on average for each individual disease sites. The mean values of true positive and false positive rates of error detection were 92.38% and 10.23% respectively for single-prescription cases of nine disease sites. The wrong value of individual physician order parameters and logical inconsistence between physician order parameters could be detected by applying association rules with high positive rate, which could be further improved by optimizing the association rule discovery algorithm. The association rules are human expert understandable and verifiable, and linked directly to historical physician orders. Association rule discovery algorithm can naturally handle physician orders with missing values existing in more than 50% physician orders. The approach supports incorporation into independent error detection tools for assisting manual double-checks on physician orders. The success of the method here also gives promise to further scaling to include patient setup parameters and all treatment sites." @default.
- W2897533196 created "2018-10-26" @default.
- W2897533196 creator A5006959202 @default.
- W2897533196 creator A5040374148 @default.
- W2897533196 creator A5068853170 @default.
- W2897533196 creator A5089586439 @default.
- W2897533196 date "2018-11-01" @default.
- W2897533196 modified "2023-10-14" @default.
- W2897533196 title "Knowledge-Based Error Detection in External Beam Physician Orders Using Association Rules" @default.
- W2897533196 doi "https://doi.org/10.1016/j.ijrobp.2018.06.299" @default.
- W2897533196 hasPublicationYear "2018" @default.
- W2897533196 type Work @default.
- W2897533196 sameAs 2897533196 @default.
- W2897533196 citedByCount "0" @default.
- W2897533196 crossrefType "journal-article" @default.
- W2897533196 hasAuthorship W2897533196A5006959202 @default.
- W2897533196 hasAuthorship W2897533196A5040374148 @default.
- W2897533196 hasAuthorship W2897533196A5068853170 @default.
- W2897533196 hasAuthorship W2897533196A5089586439 @default.
- W2897533196 hasBestOaLocation W28975331961 @default.
- W2897533196 hasConcept C111472728 @default.
- W2897533196 hasConcept C126322002 @default.
- W2897533196 hasConcept C138885662 @default.
- W2897533196 hasConcept C141071460 @default.
- W2897533196 hasConcept C142853389 @default.
- W2897533196 hasConcept C146357865 @default.
- W2897533196 hasConcept C151730666 @default.
- W2897533196 hasConcept C154945302 @default.
- W2897533196 hasConcept C177264268 @default.
- W2897533196 hasConcept C193524817 @default.
- W2897533196 hasConcept C19527891 @default.
- W2897533196 hasConcept C199360897 @default.
- W2897533196 hasConcept C201645570 @default.
- W2897533196 hasConcept C2426938 @default.
- W2897533196 hasConcept C2779134260 @default.
- W2897533196 hasConcept C2780226545 @default.
- W2897533196 hasConcept C41008148 @default.
- W2897533196 hasConcept C509974204 @default.
- W2897533196 hasConcept C71924100 @default.
- W2897533196 hasConcept C86803240 @default.
- W2897533196 hasConcept C98274493 @default.
- W2897533196 hasConceptScore W2897533196C111472728 @default.
- W2897533196 hasConceptScore W2897533196C126322002 @default.
- W2897533196 hasConceptScore W2897533196C138885662 @default.
- W2897533196 hasConceptScore W2897533196C141071460 @default.
- W2897533196 hasConceptScore W2897533196C142853389 @default.
- W2897533196 hasConceptScore W2897533196C146357865 @default.
- W2897533196 hasConceptScore W2897533196C151730666 @default.
- W2897533196 hasConceptScore W2897533196C154945302 @default.
- W2897533196 hasConceptScore W2897533196C177264268 @default.
- W2897533196 hasConceptScore W2897533196C193524817 @default.
- W2897533196 hasConceptScore W2897533196C19527891 @default.
- W2897533196 hasConceptScore W2897533196C199360897 @default.
- W2897533196 hasConceptScore W2897533196C201645570 @default.
- W2897533196 hasConceptScore W2897533196C2426938 @default.
- W2897533196 hasConceptScore W2897533196C2779134260 @default.
- W2897533196 hasConceptScore W2897533196C2780226545 @default.
- W2897533196 hasConceptScore W2897533196C41008148 @default.
- W2897533196 hasConceptScore W2897533196C509974204 @default.
- W2897533196 hasConceptScore W2897533196C71924100 @default.
- W2897533196 hasConceptScore W2897533196C86803240 @default.
- W2897533196 hasConceptScore W2897533196C98274493 @default.
- W2897533196 hasIssue "3" @default.
- W2897533196 hasLocation W28975331961 @default.
- W2897533196 hasOpenAccess W2897533196 @default.
- W2897533196 hasPrimaryLocation W28975331961 @default.
- W2897533196 hasRelatedWork W1988295790 @default.
- W2897533196 hasRelatedWork W2002291311 @default.
- W2897533196 hasRelatedWork W2006650460 @default.
- W2897533196 hasRelatedWork W2013091857 @default.
- W2897533196 hasRelatedWork W2059407819 @default.
- W2897533196 hasRelatedWork W2081580005 @default.
- W2897533196 hasRelatedWork W2088350673 @default.
- W2897533196 hasRelatedWork W2353435313 @default.
- W2897533196 hasRelatedWork W2380227912 @default.
- W2897533196 hasRelatedWork W4283273431 @default.
- W2897533196 hasVolume "102" @default.
- W2897533196 isParatext "false" @default.
- W2897533196 isRetracted "false" @default.
- W2897533196 magId "2897533196" @default.
- W2897533196 workType "article" @default.