Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897543651> ?p ?o ?g. }
- W2897543651 endingPage "45" @default.
- W2897543651 startingPage "26" @default.
- W2897543651 abstract "The newly discovered Dasuji Mo deposit is located on the northern margin of the North China Craton, and the Mo mineralization is related to Triassic granite porphyry and quartz porphyry. Alteration associated with the deposit includes silicification, sericitization, chloritization, K-feldspathization, kaolinitization, carbonatization, and fluoritization. The silicification and sericitization (phyllic alteration) are closely related to the Mo mineralization. Based on mineral assemblages and cross-cutting relationships, the hydrothermal ore-forming process can be divided into four stages: stage 1 is characterized by K-feldspathization with minor molybdenum mineralization; stage 2 is the main stage of molybdenum mineralization; stage 3 is involved in lead-zinc mineralization; and stage 4 is characterized by no mineralization. Four types of fluid inclusions are recognized: liquid-rich, gas-rich, CO2-H2O, and daughter-mineral-bearing. Microthermometric data show a decrease in homogenization temperatures and salinities from the early to late stages, so that stages 1–4 show homogenization temperatures of 468–375, 435–271, 318–206, and 222–142 °C, respectively, and the fluids of stages 1, 3, and 4 had salinities of 2.57–16.50 (along with a few high-salinity inclusions: 32.04–48.05), 0.88–11.19, and 0.88–7.45 wt% NaCl equiv., respectively. The salinities of stage 2 fluid inclusions have a bimodal distribution: 1.40–17.48 and 29.20–53.25 wt% NaCl equiv. Laser ablation inductive coupled plasma mass spectrometer (LA-ICP-MS) analyses show that the fluid compositions are dominated by Na, K, Fe, and Mn. In stage 2 fluid inclusions, the Mo concentrations vary over a range of more than one order of magnitude (more than for any other element) as a result of fluid-rock interactions and molybdenite precipitation. Cu concentrations remain always relatively high in the fluids during their evolution (26–7092 ppm) because there was little chalcopyrite precipitation. The stage 3 fluid inclusions are rich in Mn, Pb, and Zn, while Ag concentrations increased in stage 3 and 4 fluid due to the addition of meteoric water from the surrounding rock. Reactions between the wallrock and hydrothermal fluids affected the composition of the hydrothermal fluids; sericitic alteration in particular had a great effect on fluid compositions, manifesting the variety of the content of Sr, Ba, Ca, Pb. The ore-forming fluids were mainly magmatic-hydrothermal fluids that were mixed with meteoric water during stages 3 and 4. Fluid immiscibility, a rapid decrease in pressure, fluid-rock reactions and fluid cooling were collectively responsible for the sulfide precipitation in the Dasuji deposit." @default.
- W2897543651 created "2018-10-26" @default.
- W2897543651 creator A5011415224 @default.
- W2897543651 creator A5026670668 @default.
- W2897543651 creator A5040308869 @default.
- W2897543651 creator A5042999171 @default.
- W2897543651 creator A5079317471 @default.
- W2897543651 creator A5087490597 @default.
- W2897543651 date "2019-01-01" @default.
- W2897543651 modified "2023-10-03" @default.
- W2897543651 title "Evolution of fluids in the Dasuji porphyry Mo deposit on the northern margin of the North China Craton: Constraints from Microthermometric and LA-ICP-MS analyses of fluid inclusions" @default.
- W2897543651 cites W1492000624 @default.
- W2897543651 cites W1509458422 @default.
- W2897543651 cites W1964311492 @default.
- W2897543651 cites W1966555528 @default.
- W2897543651 cites W1971613502 @default.
- W2897543651 cites W1974336211 @default.
- W2897543651 cites W1976348616 @default.
- W2897543651 cites W1995053358 @default.
- W2897543651 cites W2000886616 @default.
- W2897543651 cites W2001987411 @default.
- W2897543651 cites W2002137369 @default.
- W2897543651 cites W2008575948 @default.
- W2897543651 cites W2010539331 @default.
- W2897543651 cites W2012362383 @default.
- W2897543651 cites W2020161194 @default.
- W2897543651 cites W2025140431 @default.
- W2897543651 cites W2025493942 @default.
- W2897543651 cites W2026295157 @default.
- W2897543651 cites W2028917031 @default.
- W2897543651 cites W2030139888 @default.
- W2897543651 cites W2030315855 @default.
- W2897543651 cites W2030484090 @default.
- W2897543651 cites W2030987430 @default.
- W2897543651 cites W2035419363 @default.
- W2897543651 cites W2043003723 @default.
- W2897543651 cites W2044537972 @default.
- W2897543651 cites W2049111683 @default.
- W2897543651 cites W2050203573 @default.
- W2897543651 cites W2050739689 @default.
- W2897543651 cites W2055291265 @default.
- W2897543651 cites W2055652114 @default.
- W2897543651 cites W2061244569 @default.
- W2897543651 cites W2061359484 @default.
- W2897543651 cites W2063547595 @default.
- W2897543651 cites W2072062807 @default.
- W2897543651 cites W2072481433 @default.
- W2897543651 cites W2078320350 @default.
- W2897543651 cites W2082583308 @default.
- W2897543651 cites W2090757504 @default.
- W2897543651 cites W2094194060 @default.
- W2897543651 cites W2107506859 @default.
- W2897543651 cites W2107940308 @default.
- W2897543651 cites W2108353466 @default.
- W2897543651 cites W2116472832 @default.
- W2897543651 cites W2126466768 @default.
- W2897543651 cites W2137630956 @default.
- W2897543651 cites W2141042890 @default.
- W2897543651 cites W2147887607 @default.
- W2897543651 cites W2148631800 @default.
- W2897543651 cites W2160102246 @default.
- W2897543651 cites W2160405141 @default.
- W2897543651 cites W2165498879 @default.
- W2897543651 cites W2169156998 @default.
- W2897543651 cites W2170474283 @default.
- W2897543651 cites W2328718698 @default.
- W2897543651 cites W2487986838 @default.
- W2897543651 cites W3023102529 @default.
- W2897543651 cites W4241200697 @default.
- W2897543651 doi "https://doi.org/10.1016/j.oregeorev.2018.10.012" @default.
- W2897543651 hasPublicationYear "2019" @default.
- W2897543651 type Work @default.
- W2897543651 sameAs 2897543651 @default.
- W2897543651 citedByCount "13" @default.
- W2897543651 countsByYear W28975436512019 @default.
- W2897543651 countsByYear W28975436512020 @default.
- W2897543651 countsByYear W28975436512021 @default.
- W2897543651 countsByYear W28975436512022 @default.
- W2897543651 countsByYear W28975436512023 @default.
- W2897543651 crossrefType "journal-article" @default.
- W2897543651 hasAuthorship W2897543651A5011415224 @default.
- W2897543651 hasAuthorship W2897543651A5026670668 @default.
- W2897543651 hasAuthorship W2897543651A5040308869 @default.
- W2897543651 hasAuthorship W2897543651A5042999171 @default.
- W2897543651 hasAuthorship W2897543651A5079317471 @default.
- W2897543651 hasAuthorship W2897543651A5087490597 @default.
- W2897543651 hasConcept C111696902 @default.
- W2897543651 hasConcept C127313418 @default.
- W2897543651 hasConcept C147717901 @default.
- W2897543651 hasConcept C151730666 @default.
- W2897543651 hasConcept C156622251 @default.
- W2897543651 hasConcept C159390177 @default.
- W2897543651 hasConcept C159750122 @default.
- W2897543651 hasConcept C165205528 @default.
- W2897543651 hasConcept C17409809 @default.
- W2897543651 hasConcept C199289684 @default.
- W2897543651 hasConcept C2776152364 @default.
- W2897543651 hasConcept C2779870107 @default.