Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897552941> ?p ?o ?g. }
- W2897552941 endingPage "1664" @default.
- W2897552941 startingPage "1664" @default.
- W2897552941 abstract "Change detection (CD) of natural land cover is important for environmental protection and to maintain an ecological balance. The Landsat series of satellites provide continuous observation of the Earth’s surface and is sensitive to reflection of water, soil and vegetation. It offers fine spatial resolutions (15–80 m) and short revisit times (16–18 days). Therefore, Landsat imagery is suitable for monitoring natural land cover changes. Clustering-based CD methods using evolutionary algorithms (EAs) can be applied to Landsat images to obtain optimal changed and unchanged clustering centers (clusters) with minimum clustering index. However, they directly analyze difference image (DI), which finds itself subject to interference by Gaussian noise and local brightness distortion in Landsat data, resulting in false alarms in detection results. In order to reduce image interferences and improve CD accuracy, we proposed an unsupervised CD method based on multi-feature clustering using the differential evolution algorithm (M-DECD) for Landsat Imagery. First, according to characteristics of Landsat data, a multi-feature space is constructed with three elements: Wiener de-noising, detail enhancement, and structural similarity. Then, a CD method based on differential evolution (DE) algorithm and fuzzy clustering is proposed to obtain global optimal clusters in the multi-feature space, and generate a binary change map (CM). In addition, the control parameters of the DE algorithm are adjusted to improve the robustness of M-DECD. The experimental results obtained with four Landsat datasets confirm the effectiveness of M-DECD. Compared with the results of conventional methods and the current state-of-the-art methods based on evolutionary clustering, the detection accuracies of the M-DECD on the Mexico dataset and the Sardinia dataset are very close to the best results. The accuracies of the M-DECD in the Alaska dataset and the large Canada dataset increased by about 3.3% and 11.9%, respectively. This indicates that multiple features are suitable for Landsat images and the DE algorithm is effective in searching for an optimal CD result." @default.
- W2897552941 created "2018-10-26" @default.
- W2897552941 creator A5026896694 @default.
- W2897552941 creator A5030713988 @default.
- W2897552941 creator A5075903928 @default.
- W2897552941 date "2018-10-21" @default.
- W2897552941 modified "2023-09-24" @default.
- W2897552941 title "Change Detection Based on Multi-Feature Clustering Using Differential Evolution for Landsat Imagery" @default.
- W2897552941 cites W1595159159 @default.
- W2897552941 cites W1661193476 @default.
- W2897552941 cites W1958497227 @default.
- W2897552941 cites W1964069486 @default.
- W2897552941 cites W1965401331 @default.
- W2897552941 cites W1970737988 @default.
- W2897552941 cites W1971580912 @default.
- W2897552941 cites W1991576946 @default.
- W2897552941 cites W1995450389 @default.
- W2897552941 cites W2000420485 @default.
- W2897552941 cites W2002151876 @default.
- W2897552941 cites W2004225550 @default.
- W2897552941 cites W2004927580 @default.
- W2897552941 cites W2027091505 @default.
- W2897552941 cites W2027945080 @default.
- W2897552941 cites W2036798369 @default.
- W2897552941 cites W2049299219 @default.
- W2897552941 cites W2057670944 @default.
- W2897552941 cites W2067435942 @default.
- W2897552941 cites W2068926763 @default.
- W2897552941 cites W2074538295 @default.
- W2897552941 cites W2118573797 @default.
- W2897552941 cites W2120641882 @default.
- W2897552941 cites W2130020884 @default.
- W2897552941 cites W2133059825 @default.
- W2897552941 cites W2133665775 @default.
- W2897552941 cites W2137495031 @default.
- W2897552941 cites W2149939703 @default.
- W2897552941 cites W2153864221 @default.
- W2897552941 cites W2156194072 @default.
- W2897552941 cites W2160544350 @default.
- W2897552941 cites W2165012164 @default.
- W2897552941 cites W2174636480 @default.
- W2897552941 cites W2310612427 @default.
- W2897552941 cites W2572351443 @default.
- W2897552941 cites W2592156131 @default.
- W2897552941 cites W2767043538 @default.
- W2897552941 cites W2771635595 @default.
- W2897552941 cites W3105100264 @default.
- W2897552941 doi "https://doi.org/10.3390/rs10101664" @default.
- W2897552941 hasPublicationYear "2018" @default.
- W2897552941 type Work @default.
- W2897552941 sameAs 2897552941 @default.
- W2897552941 citedByCount "14" @default.
- W2897552941 countsByYear W28975529412019 @default.
- W2897552941 countsByYear W28975529412020 @default.
- W2897552941 countsByYear W28975529412021 @default.
- W2897552941 countsByYear W28975529412022 @default.
- W2897552941 countsByYear W28975529412023 @default.
- W2897552941 crossrefType "journal-article" @default.
- W2897552941 hasAuthorship W2897552941A5026896694 @default.
- W2897552941 hasAuthorship W2897552941A5030713988 @default.
- W2897552941 hasAuthorship W2897552941A5075903928 @default.
- W2897552941 hasBestOaLocation W28975529411 @default.
- W2897552941 hasConcept C111368507 @default.
- W2897552941 hasConcept C124101348 @default.
- W2897552941 hasConcept C127313418 @default.
- W2897552941 hasConcept C127413603 @default.
- W2897552941 hasConcept C132651083 @default.
- W2897552941 hasConcept C147176958 @default.
- W2897552941 hasConcept C153180895 @default.
- W2897552941 hasConcept C1549246 @default.
- W2897552941 hasConcept C154945302 @default.
- W2897552941 hasConcept C17212007 @default.
- W2897552941 hasConcept C203595873 @default.
- W2897552941 hasConcept C205649164 @default.
- W2897552941 hasConcept C2780648208 @default.
- W2897552941 hasConcept C41008148 @default.
- W2897552941 hasConcept C4792198 @default.
- W2897552941 hasConcept C62649853 @default.
- W2897552941 hasConcept C73555534 @default.
- W2897552941 hasConcept C74750220 @default.
- W2897552941 hasConceptScore W2897552941C111368507 @default.
- W2897552941 hasConceptScore W2897552941C124101348 @default.
- W2897552941 hasConceptScore W2897552941C127313418 @default.
- W2897552941 hasConceptScore W2897552941C127413603 @default.
- W2897552941 hasConceptScore W2897552941C132651083 @default.
- W2897552941 hasConceptScore W2897552941C147176958 @default.
- W2897552941 hasConceptScore W2897552941C153180895 @default.
- W2897552941 hasConceptScore W2897552941C1549246 @default.
- W2897552941 hasConceptScore W2897552941C154945302 @default.
- W2897552941 hasConceptScore W2897552941C17212007 @default.
- W2897552941 hasConceptScore W2897552941C203595873 @default.
- W2897552941 hasConceptScore W2897552941C205649164 @default.
- W2897552941 hasConceptScore W2897552941C2780648208 @default.
- W2897552941 hasConceptScore W2897552941C41008148 @default.
- W2897552941 hasConceptScore W2897552941C4792198 @default.
- W2897552941 hasConceptScore W2897552941C62649853 @default.
- W2897552941 hasConceptScore W2897552941C73555534 @default.
- W2897552941 hasConceptScore W2897552941C74750220 @default.