Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897555561> ?p ?o ?g. }
- W2897555561 abstract "In this paper, we use augmented the hierarchical latent variable model to model multi-period time series, where the dynamics of time series are governed by factors or trends in multiple periods. Previous methods based on stacked recurrent neural network (RNN) and deep belief network (DBN) models cannot model the tendencies in multiple periods, and no models for sequential data pay special attention to redundant input variables which have no or even negative impact on prediction and modeling. Applying hierarchical latent variable model with multiple transition periods, our proposed algorithm can capture dependencies in different temporal resolutions. Introducing Bayesian neural network with Horseshoe prior as input network, we can discard the redundant input variables in the optimization process, concurrently with the learning of other parts of the model. Based on experiments with both synthetic and real-world data, we show that the proposed method significantly improves the modeling and prediction performance on multi-period time series." @default.
- W2897555561 created "2018-10-26" @default.
- W2897555561 creator A5046896462 @default.
- W2897555561 date "2017-07-03" @default.
- W2897555561 modified "2023-09-27" @default.
- W2897555561 title "Multi-period Time Series Modeling with Sparsity via Bayesian Variational Inference" @default.
- W2897555561 cites W1499798934 @default.
- W2897555561 cites W1560739766 @default.
- W2897555561 cites W1810943226 @default.
- W2897555561 cites W1924770834 @default.
- W2897555561 cites W2004353783 @default.
- W2897555561 cites W2064675550 @default.
- W2897555561 cites W2157801062 @default.
- W2897555561 cites W2265185286 @default.
- W2897555561 cites W2612810742 @default.
- W2897555561 cites W2619890685 @default.
- W2897555561 cites W2766673981 @default.
- W2897555561 cites W2803132671 @default.
- W2897555561 cites W2919115771 @default.
- W2897555561 cites W2963173382 @default.
- W2897555561 cites W2964121744 @default.
- W2897555561 cites W2964232608 @default.
- W2897555561 cites W2998441233 @default.
- W2897555561 cites W592244745 @default.
- W2897555561 cites W81813850 @default.
- W2897555561 cites W2114001875 @default.
- W2897555561 cites W2266344152 @default.
- W2897555561 hasPublicationYear "2017" @default.
- W2897555561 type Work @default.
- W2897555561 sameAs 2897555561 @default.
- W2897555561 citedByCount "9" @default.
- W2897555561 countsByYear W28975555612017 @default.
- W2897555561 countsByYear W28975555612018 @default.
- W2897555561 countsByYear W28975555612019 @default.
- W2897555561 countsByYear W28975555612020 @default.
- W2897555561 crossrefType "posted-content" @default.
- W2897555561 hasAuthorship W2897555561A5046896462 @default.
- W2897555561 hasConcept C107673813 @default.
- W2897555561 hasConcept C11413529 @default.
- W2897555561 hasConcept C119857082 @default.
- W2897555561 hasConcept C134306372 @default.
- W2897555561 hasConcept C143724316 @default.
- W2897555561 hasConcept C147168706 @default.
- W2897555561 hasConcept C151406439 @default.
- W2897555561 hasConcept C151730666 @default.
- W2897555561 hasConcept C154945302 @default.
- W2897555561 hasConcept C160234255 @default.
- W2897555561 hasConcept C182365436 @default.
- W2897555561 hasConcept C2776214188 @default.
- W2897555561 hasConcept C33923547 @default.
- W2897555561 hasConcept C41008148 @default.
- W2897555561 hasConcept C50644808 @default.
- W2897555561 hasConcept C51167844 @default.
- W2897555561 hasConcept C65965080 @default.
- W2897555561 hasConcept C82142266 @default.
- W2897555561 hasConcept C86803240 @default.
- W2897555561 hasConceptScore W2897555561C107673813 @default.
- W2897555561 hasConceptScore W2897555561C11413529 @default.
- W2897555561 hasConceptScore W2897555561C119857082 @default.
- W2897555561 hasConceptScore W2897555561C134306372 @default.
- W2897555561 hasConceptScore W2897555561C143724316 @default.
- W2897555561 hasConceptScore W2897555561C147168706 @default.
- W2897555561 hasConceptScore W2897555561C151406439 @default.
- W2897555561 hasConceptScore W2897555561C151730666 @default.
- W2897555561 hasConceptScore W2897555561C154945302 @default.
- W2897555561 hasConceptScore W2897555561C160234255 @default.
- W2897555561 hasConceptScore W2897555561C182365436 @default.
- W2897555561 hasConceptScore W2897555561C2776214188 @default.
- W2897555561 hasConceptScore W2897555561C33923547 @default.
- W2897555561 hasConceptScore W2897555561C41008148 @default.
- W2897555561 hasConceptScore W2897555561C50644808 @default.
- W2897555561 hasConceptScore W2897555561C51167844 @default.
- W2897555561 hasConceptScore W2897555561C65965080 @default.
- W2897555561 hasConceptScore W2897555561C82142266 @default.
- W2897555561 hasConceptScore W2897555561C86803240 @default.
- W2897555561 hasLocation W28975555611 @default.
- W2897555561 hasOpenAccess W2897555561 @default.
- W2897555561 hasPrimaryLocation W28975555611 @default.
- W2897555561 hasRelatedWork W2064675550 @default.
- W2897555561 hasRelatedWork W2105107824 @default.
- W2897555561 hasRelatedWork W2353068184 @default.
- W2897555561 hasRelatedWork W2371236956 @default.
- W2897555561 hasRelatedWork W2392809544 @default.
- W2897555561 hasRelatedWork W2402413559 @default.
- W2897555561 hasRelatedWork W2616896668 @default.
- W2897555561 hasRelatedWork W2765873589 @default.
- W2897555561 hasRelatedWork W2890940245 @default.
- W2897555561 hasRelatedWork W2891107282 @default.
- W2897555561 hasRelatedWork W2897591836 @default.
- W2897555561 hasRelatedWork W2952797480 @default.
- W2897555561 hasRelatedWork W2964121744 @default.
- W2897555561 hasRelatedWork W2964711111 @default.
- W2897555561 hasRelatedWork W3015316773 @default.
- W2897555561 hasRelatedWork W3123251322 @default.
- W2897555561 hasRelatedWork W3175779585 @default.
- W2897555561 hasRelatedWork W3192802934 @default.
- W2897555561 hasRelatedWork W3204704939 @default.
- W2897555561 hasRelatedWork W3209265114 @default.
- W2897555561 isParatext "false" @default.
- W2897555561 isRetracted "false" @default.