Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897558851> ?p ?o ?g. }
- W2897558851 abstract "Abstract Uncertainty quantification of production forecasts is crucially important for business planning of hydrocarbon field developments. This is still a very challenging task, especially when subsurface uncertainties must be conditioned to production data. Many different approaches have been proposed, each with their strengths and weaknesses. In this work, we develop a robust uncertainty quantification workflow by seamless integration of a distributed Gauss-Newton (DGN) optimization method with Gaussian Mixture Model (GMM) and parallelized sampling algorithms. Results are compared with those obtained from other approaches. Multiple local maximum-a-posteriori (MAP) estimates are located with the local-search DGN optimization method. A GMM is constructed to approximate the posterior probability density function, by fitting simulation results generated during the DGN minimization process. The traditional acceptance-rejection (AR) algorithm is parallelized and applied to improve the quality of GMM samples by rejecting unqualified samples. AR-GMM samples are independent, identically-distributed (i.i.d.) samples that can be directly used for uncertainty quantification of model parameters and production forecasts. The proposed method is first validated with 1-D nonlinear synthetic problems having multiple MAP points. The AR-GMM samples are better than the original GMM samples. Then, it is tested with a synthetic history-matching problem using the SPE-1 reservoir model with 8 uncertain parameters. The proposed method generates conditional samples that are better than or equivalent to those generated by other methods, e.g., Markov chain Monte Carlo (MCMC) and global search DGN combined with the Randomized Maximum Likelihood (RML) approach, but have a much lower computational cost (by a factor of 5 to 100). Finally, it is applied to a real field reservoir model with synthetic data, having 235 uncertain parameters. A GMM with 27 Gaussian components is constructed to approximate the actual posterior PDF. 105 AR-GMM samples are accepted from the 1000 original GMM samples, and are used to quantify uncertainty of production forecasts. The proposed method is further validated by the fact that production forecasts for all AR-GMM samples are quite consistent with the production data observed after the history matching period. The newly proposed approach for history matching and uncertainty quantification is quite efficient and robust. The DGN optimization method can efficiently identify multiple local MAP points in parallel. The GMM yields proposal candidates with sufficiently high acceptance ratios for the AR algorithm. Parallelization makes the AR algorithm much more efficient, which further enhances the efficiency of the integrated workflow." @default.
- W2897558851 created "2018-10-26" @default.
- W2897558851 creator A5000888071 @default.
- W2897558851 creator A5006734286 @default.
- W2897558851 creator A5012441761 @default.
- W2897558851 creator A5018265142 @default.
- W2897558851 creator A5026484158 @default.
- W2897558851 creator A5059254277 @default.
- W2897558851 creator A5086747347 @default.
- W2897558851 creator A5087210530 @default.
- W2897558851 date "2018-09-24" @default.
- W2897558851 modified "2023-10-18" @default.
- W2897558851 title "Robust Uncertainty Quantification through Integration of Distributed Gauss-Newton Optimization with Gaussian Mixture Model and Parallelized Sampling Algorithms" @default.
- W2897558851 cites W1512208174 @default.
- W2897558851 cites W1648907168 @default.
- W2897558851 cites W1896953440 @default.
- W2897558851 cites W1965612527 @default.
- W2897558851 cites W1976584025 @default.
- W2897558851 cites W1985633214 @default.
- W2897558851 cites W2004124997 @default.
- W2897558851 cites W2018353504 @default.
- W2897558851 cites W2019797282 @default.
- W2897558851 cites W2022491243 @default.
- W2897558851 cites W2023669272 @default.
- W2897558851 cites W2025130584 @default.
- W2897558851 cites W2025179796 @default.
- W2897558851 cites W2030235247 @default.
- W2897558851 cites W2031595058 @default.
- W2897558851 cites W2033057584 @default.
- W2897558851 cites W2033665966 @default.
- W2897558851 cites W2034829072 @default.
- W2897558851 cites W2040658407 @default.
- W2897558851 cites W2043760480 @default.
- W2897558851 cites W2046372107 @default.
- W2897558851 cites W2059540557 @default.
- W2897558851 cites W2062505545 @default.
- W2897558851 cites W2072631273 @default.
- W2897558851 cites W2077491939 @default.
- W2897558851 cites W2078639717 @default.
- W2897558851 cites W2081182050 @default.
- W2897558851 cites W2109320267 @default.
- W2897558851 cites W2112498056 @default.
- W2897558851 cites W2124183708 @default.
- W2897558851 cites W2158987262 @default.
- W2897558851 cites W2167945806 @default.
- W2897558851 cites W2169390073 @default.
- W2897558851 cites W2274313350 @default.
- W2897558851 cites W2337332151 @default.
- W2897558851 cites W2408122054 @default.
- W2897558851 cites W2509534097 @default.
- W2897558851 cites W2584866998 @default.
- W2897558851 cites W2587532265 @default.
- W2897558851 cites W2611461852 @default.
- W2897558851 cites W2763536882 @default.
- W2897558851 cites W2783009195 @default.
- W2897558851 cites W2800041070 @default.
- W2897558851 cites W2962926033 @default.
- W2897558851 cites W3104223502 @default.
- W2897558851 cites W4212908912 @default.
- W2897558851 cites W4253826010 @default.
- W2897558851 doi "https://doi.org/10.2118/191516-ms" @default.
- W2897558851 hasPublicationYear "2018" @default.
- W2897558851 type Work @default.
- W2897558851 sameAs 2897558851 @default.
- W2897558851 citedByCount "4" @default.
- W2897558851 countsByYear W28975588512019 @default.
- W2897558851 crossrefType "proceedings-article" @default.
- W2897558851 hasAuthorship W2897558851A5000888071 @default.
- W2897558851 hasAuthorship W2897558851A5006734286 @default.
- W2897558851 hasAuthorship W2897558851A5012441761 @default.
- W2897558851 hasAuthorship W2897558851A5018265142 @default.
- W2897558851 hasAuthorship W2897558851A5026484158 @default.
- W2897558851 hasAuthorship W2897558851A5059254277 @default.
- W2897558851 hasAuthorship W2897558851A5086747347 @default.
- W2897558851 hasAuthorship W2897558851A5087210530 @default.
- W2897558851 hasConcept C105795698 @default.
- W2897558851 hasConcept C106131492 @default.
- W2897558851 hasConcept C107673813 @default.
- W2897558851 hasConcept C111350023 @default.
- W2897558851 hasConcept C11413529 @default.
- W2897558851 hasConcept C119857082 @default.
- W2897558851 hasConcept C126255220 @default.
- W2897558851 hasConcept C140779682 @default.
- W2897558851 hasConcept C154945302 @default.
- W2897558851 hasConcept C31972630 @default.
- W2897558851 hasConcept C32230216 @default.
- W2897558851 hasConcept C33923547 @default.
- W2897558851 hasConcept C41008148 @default.
- W2897558851 hasConcept C49781872 @default.
- W2897558851 hasConcept C61224824 @default.
- W2897558851 hasConcept C9810830 @default.
- W2897558851 hasConceptScore W2897558851C105795698 @default.
- W2897558851 hasConceptScore W2897558851C106131492 @default.
- W2897558851 hasConceptScore W2897558851C107673813 @default.
- W2897558851 hasConceptScore W2897558851C111350023 @default.
- W2897558851 hasConceptScore W2897558851C11413529 @default.
- W2897558851 hasConceptScore W2897558851C119857082 @default.
- W2897558851 hasConceptScore W2897558851C126255220 @default.
- W2897558851 hasConceptScore W2897558851C140779682 @default.
- W2897558851 hasConceptScore W2897558851C154945302 @default.