Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897565907> ?p ?o ?g. }
- W2897565907 endingPage "179" @default.
- W2897565907 startingPage "165" @default.
- W2897565907 abstract "Suspended sediment has significant effects on reservoir storage capacity, the operation of hydraulic structures and river morphology. Hence, modeling suspended sediment loads (SSL) in rivers contributes to various water resource management and river engineering. An evaluation of stand-alone data mining models (i.e., reduced error pruning tree (REPT), M5P and instance-based learning (IBK)) and hybrid models, (i.e., bagging-M5P, random committee-REPT (RC-REPT) and random subspace-REPT (RS-REPT)) for predicting SSL resulting from glacial melting at an Andean catchment in Chile has been conducted in this study. The best input combinations are constructed based on Pearson correlation coefficient (PCC) of hourly SSL time series data with water discharge (Q), water temperature (T) and electrical conductivity (C) for different time lags. Seventy percent of the available data (one year of hourly data) is used to calibrate the models (dataset training) and the remaining 30% is used for model evaluation (dataset testing). The performances of the models are evaluated using several quantitative and graphical criteria, including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), percentage of bias (PBIAS), the ratio of RMSE to the standard deviation of observation (RSR), a Taylor diagram and a boxplot. All the models performed well in predicting SSL. However, the Friedman and Wilcoxon signed rank tests revealed that predicted SSL significantly differed for different models except between IBK (or M5P) and REPT. The hybrid models performed better than individual models. The bagging-M5P had the best predictive capability while the REPT had the poorest." @default.
- W2897565907 created "2018-10-26" @default.
- W2897565907 creator A5037953109 @default.
- W2897565907 creator A5038465994 @default.
- W2897565907 creator A5047150854 @default.
- W2897565907 creator A5075190563 @default.
- W2897565907 creator A5083514118 @default.
- W2897565907 date "2018-12-01" @default.
- W2897565907 modified "2023-09-26" @default.
- W2897565907 title "Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile" @default.
- W2897565907 cites W1551093938 @default.
- W2897565907 cites W1580500061 @default.
- W2897565907 cites W1973737002 @default.
- W2897565907 cites W1983461184 @default.
- W2897565907 cites W1985479415 @default.
- W2897565907 cites W1988523040 @default.
- W2897565907 cites W1996072998 @default.
- W2897565907 cites W2004754531 @default.
- W2897565907 cites W2006345381 @default.
- W2897565907 cites W2007983219 @default.
- W2897565907 cites W2010351326 @default.
- W2897565907 cites W2026032760 @default.
- W2897565907 cites W2026304613 @default.
- W2897565907 cites W2037460094 @default.
- W2897565907 cites W2045987130 @default.
- W2897565907 cites W2046884547 @default.
- W2897565907 cites W2058570782 @default.
- W2897565907 cites W2058998445 @default.
- W2897565907 cites W2059666149 @default.
- W2897565907 cites W2065170480 @default.
- W2897565907 cites W2065902166 @default.
- W2897565907 cites W2067098334 @default.
- W2897565907 cites W2069802481 @default.
- W2897565907 cites W2070133126 @default.
- W2897565907 cites W2070449671 @default.
- W2897565907 cites W2092276841 @default.
- W2897565907 cites W2098937035 @default.
- W2897565907 cites W2099534828 @default.
- W2897565907 cites W2104609361 @default.
- W2897565907 cites W2108613620 @default.
- W2897565907 cites W2111575929 @default.
- W2897565907 cites W2113242816 @default.
- W2897565907 cites W2124698328 @default.
- W2897565907 cites W2128954654 @default.
- W2897565907 cites W2138763184 @default.
- W2897565907 cites W2156668765 @default.
- W2897565907 cites W2160032111 @default.
- W2897565907 cites W2271581156 @default.
- W2897565907 cites W2423094380 @default.
- W2897565907 cites W2490619389 @default.
- W2897565907 cites W2530563849 @default.
- W2897565907 cites W2531455364 @default.
- W2897565907 cites W2567532465 @default.
- W2897565907 cites W2748606210 @default.
- W2897565907 cites W2753179649 @default.
- W2897565907 cites W2754332904 @default.
- W2897565907 cites W2759592367 @default.
- W2897565907 cites W2763383283 @default.
- W2897565907 cites W2763583391 @default.
- W2897565907 cites W2788477662 @default.
- W2897565907 cites W2791328889 @default.
- W2897565907 cites W2792034138 @default.
- W2897565907 cites W2799934287 @default.
- W2897565907 cites W2805995599 @default.
- W2897565907 cites W2808724894 @default.
- W2897565907 cites W2884204400 @default.
- W2897565907 cites W2884959379 @default.
- W2897565907 cites W2891554587 @default.
- W2897565907 cites W2893577034 @default.
- W2897565907 cites W4241727697 @default.
- W2897565907 cites W4249047679 @default.
- W2897565907 cites W2749573641 @default.
- W2897565907 doi "https://doi.org/10.1016/j.jhydrol.2018.10.015" @default.
- W2897565907 hasPublicationYear "2018" @default.
- W2897565907 type Work @default.
- W2897565907 sameAs 2897565907 @default.
- W2897565907 citedByCount "125" @default.
- W2897565907 countsByYear W28975659072019 @default.
- W2897565907 countsByYear W28975659072020 @default.
- W2897565907 countsByYear W28975659072021 @default.
- W2897565907 countsByYear W28975659072022 @default.
- W2897565907 countsByYear W28975659072023 @default.
- W2897565907 crossrefType "journal-article" @default.
- W2897565907 hasAuthorship W2897565907A5037953109 @default.
- W2897565907 hasAuthorship W2897565907A5038465994 @default.
- W2897565907 hasAuthorship W2897565907A5047150854 @default.
- W2897565907 hasAuthorship W2897565907A5075190563 @default.
- W2897565907 hasAuthorship W2897565907A5083514118 @default.
- W2897565907 hasBestOaLocation W28975659072 @default.
- W2897565907 hasConcept C105795698 @default.
- W2897565907 hasConcept C119857082 @default.
- W2897565907 hasConcept C127313418 @default.
- W2897565907 hasConcept C128990827 @default.
- W2897565907 hasConcept C139945424 @default.
- W2897565907 hasConcept C169258074 @default.
- W2897565907 hasConcept C187320778 @default.
- W2897565907 hasConcept C2780092901 @default.
- W2897565907 hasConcept C33923547 @default.