Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897567510> ?p ?o ?g. }
- W2897567510 endingPage "28713" @default.
- W2897567510 startingPage "28713" @default.
- W2897567510 abstract "As optical networks undergo rapid development, the trade-offs among higher network service capability, and increasing operating expense (OPEX) about operations, administration and maintenance (OAM) become telecom operators' key obstacles. Intelligent and automatic OAM is considered to effectively satisfy service requirements, while dampening OPEX growth. In particular, machine learning (ML) has been investigated as a possible method of replacing human image recognition, nature language processing, automatic drive, and so forth. This is because of its essential feature extraction ability. ML application in optical networks was studied in a preliminary way recently. In ML-enabled optical networks, huge data storage and powerful computing resources are required to handle computer-intensive tasks performed in order to analyze features from big data sets. Integration of these two key resources into existing optical network architectures, in order to improve network performance, is an emerging challenge for ML-enabled optical networks. This article proposes a novel optical network architecture, which is based on software-defined networking (SDN), which is also named self-optimizing optical networks (SOON). First, we comb through intelligence development of optical networks, and introduce SOON as an OAM-oriented optical network architecture. Second, we demonstrate four typical applications within SOON, including tidal traffic prediction, alarm prediction, anomaly action detection, and routing and wavelength assignment. Finally, we discuss some open issues." @default.
- W2897567510 created "2018-10-26" @default.
- W2897567510 creator A5030811766 @default.
- W2897567510 creator A5036501863 @default.
- W2897567510 creator A5058848982 @default.
- W2897567510 creator A5062665642 @default.
- W2897567510 creator A5073501391 @default.
- W2897567510 creator A5073896742 @default.
- W2897567510 date "2018-10-19" @default.
- W2897567510 modified "2023-10-16" @default.
- W2897567510 title "SOON: self-optimizing optical networks with machine learning" @default.
- W2897567510 cites W1901616594 @default.
- W2897567510 cites W1965118466 @default.
- W2897567510 cites W1982570503 @default.
- W2897567510 cites W1987228002 @default.
- W2897567510 cites W2055777319 @default.
- W2897567510 cites W2149216516 @default.
- W2897567510 cites W2257979135 @default.
- W2897567510 cites W2738710562 @default.
- W2897567510 cites W2763530164 @default.
- W2897567510 cites W2766447205 @default.
- W2897567510 cites W2963389592 @default.
- W2897567510 doi "https://doi.org/10.1364/oe.26.028713" @default.
- W2897567510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30470044" @default.
- W2897567510 hasPublicationYear "2018" @default.
- W2897567510 type Work @default.
- W2897567510 sameAs 2897567510 @default.
- W2897567510 citedByCount "35" @default.
- W2897567510 countsByYear W28975675102019 @default.
- W2897567510 countsByYear W28975675102020 @default.
- W2897567510 countsByYear W28975675102021 @default.
- W2897567510 countsByYear W28975675102022 @default.
- W2897567510 countsByYear W28975675102023 @default.
- W2897567510 crossrefType "journal-article" @default.
- W2897567510 hasAuthorship W2897567510A5030811766 @default.
- W2897567510 hasAuthorship W2897567510A5036501863 @default.
- W2897567510 hasAuthorship W2897567510A5058848982 @default.
- W2897567510 hasAuthorship W2897567510A5062665642 @default.
- W2897567510 hasAuthorship W2897567510A5073501391 @default.
- W2897567510 hasAuthorship W2897567510A5073896742 @default.
- W2897567510 hasBestOaLocation W28975675101 @default.
- W2897567510 hasConcept C10138342 @default.
- W2897567510 hasConcept C111919701 @default.
- W2897567510 hasConcept C120314980 @default.
- W2897567510 hasConcept C121332964 @default.
- W2897567510 hasConcept C129119673 @default.
- W2897567510 hasConcept C160724564 @default.
- W2897567510 hasConcept C162324750 @default.
- W2897567510 hasConcept C193415008 @default.
- W2897567510 hasConcept C26517878 @default.
- W2897567510 hasConcept C26840048 @default.
- W2897567510 hasConcept C2781382545 @default.
- W2897567510 hasConcept C31258907 @default.
- W2897567510 hasConcept C41008148 @default.
- W2897567510 hasConcept C49040817 @default.
- W2897567510 hasConcept C6260449 @default.
- W2897567510 hasConcept C70979049 @default.
- W2897567510 hasConcept C77270119 @default.
- W2897567510 hasConcept C87450203 @default.
- W2897567510 hasConceptScore W2897567510C10138342 @default.
- W2897567510 hasConceptScore W2897567510C111919701 @default.
- W2897567510 hasConceptScore W2897567510C120314980 @default.
- W2897567510 hasConceptScore W2897567510C121332964 @default.
- W2897567510 hasConceptScore W2897567510C129119673 @default.
- W2897567510 hasConceptScore W2897567510C160724564 @default.
- W2897567510 hasConceptScore W2897567510C162324750 @default.
- W2897567510 hasConceptScore W2897567510C193415008 @default.
- W2897567510 hasConceptScore W2897567510C26517878 @default.
- W2897567510 hasConceptScore W2897567510C26840048 @default.
- W2897567510 hasConceptScore W2897567510C2781382545 @default.
- W2897567510 hasConceptScore W2897567510C31258907 @default.
- W2897567510 hasConceptScore W2897567510C41008148 @default.
- W2897567510 hasConceptScore W2897567510C49040817 @default.
- W2897567510 hasConceptScore W2897567510C6260449 @default.
- W2897567510 hasConceptScore W2897567510C70979049 @default.
- W2897567510 hasConceptScore W2897567510C77270119 @default.
- W2897567510 hasConceptScore W2897567510C87450203 @default.
- W2897567510 hasFunder F4320321001 @default.
- W2897567510 hasFunder F4320326707 @default.
- W2897567510 hasIssue "22" @default.
- W2897567510 hasLocation W28975675101 @default.
- W2897567510 hasLocation W28975675102 @default.
- W2897567510 hasOpenAccess W2897567510 @default.
- W2897567510 hasPrimaryLocation W28975675101 @default.
- W2897567510 hasRelatedWork W1984796940 @default.
- W2897567510 hasRelatedWork W2024245615 @default.
- W2897567510 hasRelatedWork W2123713075 @default.
- W2897567510 hasRelatedWork W2124464600 @default.
- W2897567510 hasRelatedWork W2135339273 @default.
- W2897567510 hasRelatedWork W2547823174 @default.
- W2897567510 hasRelatedWork W2786542713 @default.
- W2897567510 hasRelatedWork W2897567510 @default.
- W2897567510 hasRelatedWork W3041065402 @default.
- W2897567510 hasRelatedWork W4223554347 @default.
- W2897567510 hasVolume "26" @default.
- W2897567510 isParatext "false" @default.
- W2897567510 isRetracted "false" @default.
- W2897567510 magId "2897567510" @default.