Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897568029> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2897568029 abstract "Deep Convolutional Neural Network (DCNN) is a class of machine learning algorithms that has wide application in pattern recognition, image recognition and video analysis. Convolutional layers in the network extract various features from a set of inputs and adapt parameters, before they do the classification. Training of DCNN is computationally intensive and has large memory requirement, but offers multiple degrees of parallelism, as similar structures are needed for computation at various intermediate stages. Training using a general purpose processing unit does not utilize parallelism of the network, and hence, is very time and energy inefficient. In this paper, we propose a coprocessor for accelerating the training of Convolutional Neural Network using a Xilinx Kintex Ultrascale XCKU085 based HTG-K800 FPGA board. DCNN is trained using back propagation algorithm. The coprocessor can be configured for a new network structure by changing the contents of Block Memory in the FPGA, without re-synthesizing and implementing using the design software. The reconfigurability through DDR can be supported with the architecture but is not implemented. The implementation achieves a maximum throughput of 280GOp/s." @default.
- W2897568029 created "2018-10-26" @default.
- W2897568029 creator A5022525730 @default.
- W2897568029 creator A5053262823 @default.
- W2897568029 creator A5069912726 @default.
- W2897568029 date "2018-08-01" @default.
- W2897568029 modified "2023-09-26" @default.
- W2897568029 title "FPGA Based Reconfigurable Coprocessor for Deep Convolutional Neural Network Training" @default.
- W2897568029 cites W1474440726 @default.
- W2897568029 cites W1981914956 @default.
- W2897568029 cites W2013930007 @default.
- W2897568029 cites W2039647582 @default.
- W2897568029 cites W2070167224 @default.
- W2897568029 cites W2072170652 @default.
- W2897568029 cites W2149169205 @default.
- W2897568029 cites W2152839228 @default.
- W2897568029 cites W2153846939 @default.
- W2897568029 cites W2163605009 @default.
- W2897568029 cites W2517073324 @default.
- W2897568029 cites W2557355796 @default.
- W2897568029 cites W2797660040 @default.
- W2897568029 cites W2799061466 @default.
- W2897568029 cites W2896556344 @default.
- W2897568029 cites W2963374099 @default.
- W2897568029 doi "https://doi.org/10.1109/dsd.2018.00072" @default.
- W2897568029 hasPublicationYear "2018" @default.
- W2897568029 type Work @default.
- W2897568029 sameAs 2897568029 @default.
- W2897568029 citedByCount "4" @default.
- W2897568029 countsByYear W28975680292019 @default.
- W2897568029 countsByYear W28975680292020 @default.
- W2897568029 crossrefType "proceedings-article" @default.
- W2897568029 hasAuthorship W2897568029A5022525730 @default.
- W2897568029 hasAuthorship W2897568029A5053262823 @default.
- W2897568029 hasAuthorship W2897568029A5069912726 @default.
- W2897568029 hasConcept C108583219 @default.
- W2897568029 hasConcept C111919701 @default.
- W2897568029 hasConcept C115961682 @default.
- W2897568029 hasConcept C118524514 @default.
- W2897568029 hasConcept C149635348 @default.
- W2897568029 hasConcept C154945302 @default.
- W2897568029 hasConcept C157764524 @default.
- W2897568029 hasConcept C173608175 @default.
- W2897568029 hasConcept C2524010 @default.
- W2897568029 hasConcept C2777210771 @default.
- W2897568029 hasConcept C2780149590 @default.
- W2897568029 hasConcept C33923547 @default.
- W2897568029 hasConcept C41008148 @default.
- W2897568029 hasConcept C42935608 @default.
- W2897568029 hasConcept C50644808 @default.
- W2897568029 hasConcept C555944384 @default.
- W2897568029 hasConcept C75294576 @default.
- W2897568029 hasConcept C81363708 @default.
- W2897568029 hasConcept C86111242 @default.
- W2897568029 hasConceptScore W2897568029C108583219 @default.
- W2897568029 hasConceptScore W2897568029C111919701 @default.
- W2897568029 hasConceptScore W2897568029C115961682 @default.
- W2897568029 hasConceptScore W2897568029C118524514 @default.
- W2897568029 hasConceptScore W2897568029C149635348 @default.
- W2897568029 hasConceptScore W2897568029C154945302 @default.
- W2897568029 hasConceptScore W2897568029C157764524 @default.
- W2897568029 hasConceptScore W2897568029C173608175 @default.
- W2897568029 hasConceptScore W2897568029C2524010 @default.
- W2897568029 hasConceptScore W2897568029C2777210771 @default.
- W2897568029 hasConceptScore W2897568029C2780149590 @default.
- W2897568029 hasConceptScore W2897568029C33923547 @default.
- W2897568029 hasConceptScore W2897568029C41008148 @default.
- W2897568029 hasConceptScore W2897568029C42935608 @default.
- W2897568029 hasConceptScore W2897568029C50644808 @default.
- W2897568029 hasConceptScore W2897568029C555944384 @default.
- W2897568029 hasConceptScore W2897568029C75294576 @default.
- W2897568029 hasConceptScore W2897568029C81363708 @default.
- W2897568029 hasConceptScore W2897568029C86111242 @default.
- W2897568029 hasLocation W28975680291 @default.
- W2897568029 hasOpenAccess W2897568029 @default.
- W2897568029 hasPrimaryLocation W28975680291 @default.
- W2897568029 hasRelatedWork W1857140530 @default.
- W2897568029 hasRelatedWork W2011544030 @default.
- W2897568029 hasRelatedWork W2142497937 @default.
- W2897568029 hasRelatedWork W2280666763 @default.
- W2897568029 hasRelatedWork W2557988062 @default.
- W2897568029 hasRelatedWork W2738030989 @default.
- W2897568029 hasRelatedWork W2892715083 @default.
- W2897568029 hasRelatedWork W2897568029 @default.
- W2897568029 hasRelatedWork W2914905591 @default.
- W2897568029 hasRelatedWork W2940114103 @default.
- W2897568029 isParatext "false" @default.
- W2897568029 isRetracted "false" @default.
- W2897568029 magId "2897568029" @default.
- W2897568029 workType "article" @default.