Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897574832> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2897574832 endingPage "146" @default.
- W2897574832 startingPage "141" @default.
- W2897574832 abstract "Abstract Missing data values and differing sampling rates, particularly for important parameters such as particle size and stream composition, are a common problem in minerals processing plants. Missing data imputation is used to avoid information loss (due to downsampling or discarding incomplete records). A recent deep-learning technique, variational autoencoders (VAEs), has been used for missing data imputation in image data, and was compared here to imputation by mean replacement and by principal component analysis (PCA) imputation. The techniques were compared using a synthetic, nonlinear dataset, and a simulated milling circuit dataset, which included process disturbances, measurement noise, and feedback control. Each dataset was corrupted with missing values in 20% of records (lightly corrupted) and in 90% of records (heavily corrupted). For both lightly and heavily corrupted datasets, the root mean squared error of prediction for VAE imputation was lower than the traditional methods. Possibilities for the extension of missing data imputation to inferential sensing are discussed." @default.
- W2897574832 created "2018-10-26" @default.
- W2897574832 creator A5020437129 @default.
- W2897574832 creator A5036512617 @default.
- W2897574832 creator A5066835493 @default.
- W2897574832 date "2018-01-01" @default.
- W2897574832 modified "2023-09-25" @default.
- W2897574832 title "Variational Autoencoders for Missing Data Imputation with Application to a Simulated Milling Circuit" @default.
- W2897574832 cites W1419302472 @default.
- W2897574832 cites W1598553907 @default.
- W2897574832 cites W1966944608 @default.
- W2897574832 cites W2000651380 @default.
- W2897574832 cites W2025768430 @default.
- W2897574832 cites W2032997274 @default.
- W2897574832 cites W2048605748 @default.
- W2897574832 cites W2050860697 @default.
- W2897574832 cites W2059495619 @default.
- W2897574832 cites W2100495367 @default.
- W2897574832 cites W2106849258 @default.
- W2897574832 cites W2140968209 @default.
- W2897574832 cites W2539756354 @default.
- W2897574832 cites W2598225641 @default.
- W2897574832 cites W2613788197 @default.
- W2897574832 cites W2792596778 @default.
- W2897574832 doi "https://doi.org/10.1016/j.ifacol.2018.09.406" @default.
- W2897574832 hasPublicationYear "2018" @default.
- W2897574832 type Work @default.
- W2897574832 sameAs 2897574832 @default.
- W2897574832 citedByCount "53" @default.
- W2897574832 countsByYear W28975748322019 @default.
- W2897574832 countsByYear W28975748322020 @default.
- W2897574832 countsByYear W28975748322021 @default.
- W2897574832 countsByYear W28975748322022 @default.
- W2897574832 countsByYear W28975748322023 @default.
- W2897574832 crossrefType "journal-article" @default.
- W2897574832 hasAuthorship W2897574832A5020437129 @default.
- W2897574832 hasAuthorship W2897574832A5036512617 @default.
- W2897574832 hasAuthorship W2897574832A5066835493 @default.
- W2897574832 hasBestOaLocation W28975748321 @default.
- W2897574832 hasConcept C119857082 @default.
- W2897574832 hasConcept C124101348 @default.
- W2897574832 hasConcept C153180895 @default.
- W2897574832 hasConcept C154945302 @default.
- W2897574832 hasConcept C41008148 @default.
- W2897574832 hasConcept C58041806 @default.
- W2897574832 hasConcept C9357733 @default.
- W2897574832 hasConceptScore W2897574832C119857082 @default.
- W2897574832 hasConceptScore W2897574832C124101348 @default.
- W2897574832 hasConceptScore W2897574832C153180895 @default.
- W2897574832 hasConceptScore W2897574832C154945302 @default.
- W2897574832 hasConceptScore W2897574832C41008148 @default.
- W2897574832 hasConceptScore W2897574832C58041806 @default.
- W2897574832 hasConceptScore W2897574832C9357733 @default.
- W2897574832 hasIssue "21" @default.
- W2897574832 hasLocation W28975748321 @default.
- W2897574832 hasOpenAccess W2897574832 @default.
- W2897574832 hasPrimaryLocation W28975748321 @default.
- W2897574832 hasRelatedWork W2173000213 @default.
- W2897574832 hasRelatedWork W2541565311 @default.
- W2897574832 hasRelatedWork W2574666645 @default.
- W2897574832 hasRelatedWork W2577995101 @default.
- W2897574832 hasRelatedWork W2588589522 @default.
- W2897574832 hasRelatedWork W2751555317 @default.
- W2897574832 hasRelatedWork W3049453136 @default.
- W2897574832 hasRelatedWork W3179858851 @default.
- W2897574832 hasRelatedWork W569810835 @default.
- W2897574832 hasRelatedWork W2112497756 @default.
- W2897574832 hasVolume "51" @default.
- W2897574832 isParatext "false" @default.
- W2897574832 isRetracted "false" @default.
- W2897574832 magId "2897574832" @default.
- W2897574832 workType "article" @default.