Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897578219> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2897578219 abstract "Abstract The use of carbon dioxide in miscible flooding has been considered as one of the most effective techniques for enhancing oil production. The flooding efficiency is an extreme function of the minimum miscibility pressure (MMP), therefore, searching for a quick and rigorous method to determine MMP is highly needed. Slim tube experiments are normally used to measure the minimum miscibility pressure. However, such experiments are time-consuming and very costly. Different correlations have been developed to determine the MMP during CO2 injection process. These empirical equations are not widely applicable and might produce severe estimation errors, because they are developed based on limited experimental results. This paper proposes a new technique to evaluate the CO2 flooding and minimize the uncertainties of using numerical approaches. The objective of this work is developing a reliable model to predict the MMP during CO2 flooding. Actual case studies for flooding heterogeneous and anisotropic reservoir were utilized to generate the MMP model, more than 140 data points were used to construct and evaluate the proposed model. Several artificial intelligence techniques were studied to estimate the CO2−MMP for a wider range of conditions. The developed models investigate the effect of API gravity, fluid composition, and injected gas composition on the performance of CO2 flooding operation. The CO2−MMP was estimated using different artificial intelligence techniques including; radial basis function network, artificial neural network, generalized neural network and adaptive neuro-fuzzy inference system. The wellbore condition and reservoir parameters were used to provide an accurate and quick prediction for the flooding performance. Sensitivity study was conducted to optimize the model parameters. Then, the optimized artificial neural network model was utilized to extract an empirical equation. The developed equation was verified using actual field data an acceptable average absolute percentage error (AAPE) of 6.6% was obtained. In addition, the developed CO2−MMP model was compared with different determination approaches. It is found that, the proposed technique outperforms the current CO2−MMP models. This work would afford an effective approach to characterize the CO2−flooding for complex reservoirs, also improve the prediction performance of commercial software, which leads to a better production management in the particular CO2−operations." @default.
- W2897578219 created "2018-10-26" @default.
- W2897578219 creator A5046818830 @default.
- W2897578219 creator A5053834729 @default.
- W2897578219 creator A5071309872 @default.
- W2897578219 creator A5075429508 @default.
- W2897578219 date "2018-04-23" @default.
- W2897578219 modified "2023-09-27" @default.
- W2897578219 title "A New Approach to Characterize CO2 Flooding Utilizing Artificial Intelligence Techniques" @default.
- W2897578219 cites W1989649557 @default.
- W2897578219 cites W1996324466 @default.
- W2897578219 cites W2006374398 @default.
- W2897578219 cites W2010044158 @default.
- W2897578219 cites W2024467790 @default.
- W2897578219 cites W2043308012 @default.
- W2897578219 cites W2048934523 @default.
- W2897578219 cites W2074435123 @default.
- W2897578219 cites W2077811913 @default.
- W2897578219 cites W2079597494 @default.
- W2897578219 cites W2079766306 @default.
- W2897578219 cites W2082549611 @default.
- W2897578219 cites W2085473503 @default.
- W2897578219 cites W2131559875 @default.
- W2897578219 cites W2178223014 @default.
- W2897578219 cites W2184593311 @default.
- W2897578219 cites W2514971423 @default.
- W2897578219 cites W2555876100 @default.
- W2897578219 cites W2580773761 @default.
- W2897578219 cites W2619365378 @default.
- W2897578219 cites W2766998941 @default.
- W2897578219 cites W2787249892 @default.
- W2897578219 doi "https://doi.org/10.2118/192252-ms" @default.
- W2897578219 hasPublicationYear "2018" @default.
- W2897578219 type Work @default.
- W2897578219 sameAs 2897578219 @default.
- W2897578219 citedByCount "3" @default.
- W2897578219 countsByYear W28975782192020 @default.
- W2897578219 countsByYear W28975782192021 @default.
- W2897578219 crossrefType "proceedings-article" @default.
- W2897578219 hasAuthorship W2897578219A5046818830 @default.
- W2897578219 hasAuthorship W2897578219A5053834729 @default.
- W2897578219 hasAuthorship W2897578219A5071309872 @default.
- W2897578219 hasAuthorship W2897578219A5075429508 @default.
- W2897578219 hasConcept C119857082 @default.
- W2897578219 hasConcept C124101348 @default.
- W2897578219 hasConcept C127413603 @default.
- W2897578219 hasConcept C146978453 @default.
- W2897578219 hasConcept C154945302 @default.
- W2897578219 hasConcept C15744967 @default.
- W2897578219 hasConcept C186108316 @default.
- W2897578219 hasConcept C186594467 @default.
- W2897578219 hasConcept C195975749 @default.
- W2897578219 hasConcept C204323151 @default.
- W2897578219 hasConcept C2779681308 @default.
- W2897578219 hasConcept C41008148 @default.
- W2897578219 hasConcept C50644808 @default.
- W2897578219 hasConcept C542102704 @default.
- W2897578219 hasConcept C58166 @default.
- W2897578219 hasConcept C78762247 @default.
- W2897578219 hasConceptScore W2897578219C119857082 @default.
- W2897578219 hasConceptScore W2897578219C124101348 @default.
- W2897578219 hasConceptScore W2897578219C127413603 @default.
- W2897578219 hasConceptScore W2897578219C146978453 @default.
- W2897578219 hasConceptScore W2897578219C154945302 @default.
- W2897578219 hasConceptScore W2897578219C15744967 @default.
- W2897578219 hasConceptScore W2897578219C186108316 @default.
- W2897578219 hasConceptScore W2897578219C186594467 @default.
- W2897578219 hasConceptScore W2897578219C195975749 @default.
- W2897578219 hasConceptScore W2897578219C204323151 @default.
- W2897578219 hasConceptScore W2897578219C2779681308 @default.
- W2897578219 hasConceptScore W2897578219C41008148 @default.
- W2897578219 hasConceptScore W2897578219C50644808 @default.
- W2897578219 hasConceptScore W2897578219C542102704 @default.
- W2897578219 hasConceptScore W2897578219C58166 @default.
- W2897578219 hasConceptScore W2897578219C78762247 @default.
- W2897578219 hasLocation W28975782191 @default.
- W2897578219 hasOpenAccess W2897578219 @default.
- W2897578219 hasPrimaryLocation W28975782191 @default.
- W2897578219 hasRelatedWork W1674488317 @default.
- W2897578219 hasRelatedWork W2078557843 @default.
- W2897578219 hasRelatedWork W2093937212 @default.
- W2897578219 hasRelatedWork W2359525755 @default.
- W2897578219 hasRelatedWork W2383140331 @default.
- W2897578219 hasRelatedWork W2595446231 @default.
- W2897578219 hasRelatedWork W2795082092 @default.
- W2897578219 hasRelatedWork W3184220121 @default.
- W2897578219 hasRelatedWork W4206534383 @default.
- W2897578219 hasRelatedWork W1629725936 @default.
- W2897578219 isParatext "false" @default.
- W2897578219 isRetracted "false" @default.
- W2897578219 magId "2897578219" @default.
- W2897578219 workType "article" @default.