Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897583173> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2897583173 abstract "This paper investigates the traffic sign recognition task with deep learning methods. The proposed algorithm which is called DeepSign includes three modules: a detection module (PosNet) for locating the traffic sign in a static image, a classification module (PatchNet) for classifying the detected image patch, and a temporal filter for correcting the recognition results. The PosNet is a binary object detection convolution neural network which regards all traffic signs as one class and the background as the other class. Different from the traditional works which recognize the traffic sign on the static image, the proposed temporal filter exploits the contextual information to recover the missed detection region and correct the false classification. The experiments validate the effectiveness of the proposed algorithm. It achieved the third place on the traffic sign recognition task in 2017 China intelligent vehicle future challenge (2017 CIVFC)." @default.
- W2897583173 created "2018-10-26" @default.
- W2897583173 creator A5012412127 @default.
- W2897583173 creator A5029754204 @default.
- W2897583173 creator A5049454999 @default.
- W2897583173 creator A5053853035 @default.
- W2897583173 date "2018-07-01" @default.
- W2897583173 modified "2023-09-23" @default.
- W2897583173 title "DeepSign: Deep Learning based Traffic Sign Recognition" @default.
- W2897583173 cites W1677182931 @default.
- W2897583173 cites W1998871722 @default.
- W2897583173 cites W2001412060 @default.
- W2897583173 cites W2012742472 @default.
- W2897583173 cites W2097117768 @default.
- W2897583173 cites W2113650053 @default.
- W2897583173 cites W2117539524 @default.
- W2897583173 cites W2472350142 @default.
- W2897583173 cites W2524008204 @default.
- W2897583173 cites W2524771588 @default.
- W2897583173 cites W2550190059 @default.
- W2897583173 cites W2963150697 @default.
- W2897583173 cites W639708223 @default.
- W2897583173 doi "https://doi.org/10.1109/ijcnn.2018.8489623" @default.
- W2897583173 hasPublicationYear "2018" @default.
- W2897583173 type Work @default.
- W2897583173 sameAs 2897583173 @default.
- W2897583173 citedByCount "17" @default.
- W2897583173 countsByYear W28975831732018 @default.
- W2897583173 countsByYear W28975831732019 @default.
- W2897583173 countsByYear W28975831732020 @default.
- W2897583173 countsByYear W28975831732021 @default.
- W2897583173 countsByYear W28975831732022 @default.
- W2897583173 crossrefType "proceedings-article" @default.
- W2897583173 hasAuthorship W2897583173A5012412127 @default.
- W2897583173 hasAuthorship W2897583173A5029754204 @default.
- W2897583173 hasAuthorship W2897583173A5049454999 @default.
- W2897583173 hasAuthorship W2897583173A5053853035 @default.
- W2897583173 hasConcept C106131492 @default.
- W2897583173 hasConcept C108583219 @default.
- W2897583173 hasConcept C127413603 @default.
- W2897583173 hasConcept C134306372 @default.
- W2897583173 hasConcept C139676723 @default.
- W2897583173 hasConcept C153180895 @default.
- W2897583173 hasConcept C154945302 @default.
- W2897583173 hasConcept C201995342 @default.
- W2897583173 hasConcept C2776151529 @default.
- W2897583173 hasConcept C2777212361 @default.
- W2897583173 hasConcept C2780451532 @default.
- W2897583173 hasConcept C2983860417 @default.
- W2897583173 hasConcept C31972630 @default.
- W2897583173 hasConcept C33923547 @default.
- W2897583173 hasConcept C41008148 @default.
- W2897583173 hasConcept C52622490 @default.
- W2897583173 hasConcept C6528762 @default.
- W2897583173 hasConcept C81363708 @default.
- W2897583173 hasConceptScore W2897583173C106131492 @default.
- W2897583173 hasConceptScore W2897583173C108583219 @default.
- W2897583173 hasConceptScore W2897583173C127413603 @default.
- W2897583173 hasConceptScore W2897583173C134306372 @default.
- W2897583173 hasConceptScore W2897583173C139676723 @default.
- W2897583173 hasConceptScore W2897583173C153180895 @default.
- W2897583173 hasConceptScore W2897583173C154945302 @default.
- W2897583173 hasConceptScore W2897583173C201995342 @default.
- W2897583173 hasConceptScore W2897583173C2776151529 @default.
- W2897583173 hasConceptScore W2897583173C2777212361 @default.
- W2897583173 hasConceptScore W2897583173C2780451532 @default.
- W2897583173 hasConceptScore W2897583173C2983860417 @default.
- W2897583173 hasConceptScore W2897583173C31972630 @default.
- W2897583173 hasConceptScore W2897583173C33923547 @default.
- W2897583173 hasConceptScore W2897583173C41008148 @default.
- W2897583173 hasConceptScore W2897583173C52622490 @default.
- W2897583173 hasConceptScore W2897583173C6528762 @default.
- W2897583173 hasConceptScore W2897583173C81363708 @default.
- W2897583173 hasLocation W28975831731 @default.
- W2897583173 hasOpenAccess W2897583173 @default.
- W2897583173 hasPrimaryLocation W28975831731 @default.
- W2897583173 hasRelatedWork W2059299633 @default.
- W2897583173 hasRelatedWork W2279398222 @default.
- W2897583173 hasRelatedWork W2732542196 @default.
- W2897583173 hasRelatedWork W2773120646 @default.
- W2897583173 hasRelatedWork W2982055638 @default.
- W2897583173 hasRelatedWork W3011074480 @default.
- W2897583173 hasRelatedWork W3156786002 @default.
- W2897583173 hasRelatedWork W4221014278 @default.
- W2897583173 hasRelatedWork W4299822940 @default.
- W2897583173 hasRelatedWork W4311401716 @default.
- W2897583173 isParatext "false" @default.
- W2897583173 isRetracted "false" @default.
- W2897583173 magId "2897583173" @default.
- W2897583173 workType "article" @default.