Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897587989> ?p ?o ?g. }
- W2897587989 endingPage "2059" @default.
- W2897587989 startingPage "2049" @default.
- W2897587989 abstract "Abstract Background The field of psychiatry would benefit significantly from developing objective biomarkers that could facilitate the early identification of heterogeneous subtypes of illness. Critically, although machine learning pattern recognition methods have been applied recently to predict many psychiatric disorders, these techniques have not been utilized to predict subtypes of posttraumatic stress disorder (PTSD), including the dissociative subtype of PTSD (PTSD + DS). Methods Using Multiclass Gaussian Process Classification within PRoNTo, we examined the classification accuracy of: (i) the mean amplitude of low-frequency fluctuations (mALFF; reflecting spontaneous neural activity during rest); and (ii) seed-based amygdala complex functional connectivity within 181 participants [PTSD ( n = 81); PTSD + DS ( n = 49); and age-matched healthy trauma-unexposed controls ( n = 51)]. We also computed mass-univariate analyses in order to observe regional group differences [false-discovery-rate (FDR)-cluster corrected p < 0.05, k = 20]. Results We found that extracted features could predict accurately the classification of PTSD, PTSD + DS, and healthy controls, using both resting-state mALFF (91.63% balanced accuracy, p < 0.001) and amygdala complex connectivity maps (85.00% balanced accuracy, p < 0.001). These results were replicated using independent machine learning algorithms/cross-validation procedures. Moreover, areas weighted as being most important for group classification also displayed significant group differences at the univariate level. Here, whereas the PTSD + DS group displayed increased activation within emotion regulation regions, the PTSD group showed increased activation within the amygdala, globus pallidus, and motor/somatosensory regions. Conclusion The current study has significant implications for advancing machine learning applications within the field of psychiatry, as well as for developing objective biomarkers indicative of diagnostic heterogeneity." @default.
- W2897587989 created "2018-10-26" @default.
- W2897587989 creator A5018283074 @default.
- W2897587989 creator A5020196831 @default.
- W2897587989 creator A5051255489 @default.
- W2897587989 creator A5054146035 @default.
- W2897587989 creator A5062351189 @default.
- W2897587989 creator A5069979654 @default.
- W2897587989 creator A5072827705 @default.
- W2897587989 creator A5080545075 @default.
- W2897587989 creator A5091781989 @default.
- W2897587989 date "2018-10-11" @default.
- W2897587989 modified "2023-10-16" @default.
- W2897587989 title "Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach" @default.
- W2897587989 cites W1097741600 @default.
- W2897587989 cites W1496495698 @default.
- W2897587989 cites W1624590394 @default.
- W2897587989 cites W1787826152 @default.
- W2897587989 cites W1964647061 @default.
- W2897587989 cites W1966806791 @default.
- W2897587989 cites W1969959732 @default.
- W2897587989 cites W1973486373 @default.
- W2897587989 cites W1979538778 @default.
- W2897587989 cites W1981786093 @default.
- W2897587989 cites W1990254102 @default.
- W2897587989 cites W1994950269 @default.
- W2897587989 cites W2002801119 @default.
- W2897587989 cites W2011520396 @default.
- W2897587989 cites W2026836897 @default.
- W2897587989 cites W2031503422 @default.
- W2897587989 cites W2035766615 @default.
- W2897587989 cites W2040305148 @default.
- W2897587989 cites W2040545532 @default.
- W2897587989 cites W2064029491 @default.
- W2897587989 cites W2064514539 @default.
- W2897587989 cites W2068943689 @default.
- W2897587989 cites W2076368132 @default.
- W2897587989 cites W2079204732 @default.
- W2897587989 cites W2081956352 @default.
- W2897587989 cites W2082109620 @default.
- W2897587989 cites W2103881507 @default.
- W2897587989 cites W2104622135 @default.
- W2897587989 cites W2106557234 @default.
- W2897587989 cites W2110747672 @default.
- W2897587989 cites W2114429947 @default.
- W2897587989 cites W2117925162 @default.
- W2897587989 cites W2124556602 @default.
- W2897587989 cites W2127824299 @default.
- W2897587989 cites W2129911738 @default.
- W2897587989 cites W2132145715 @default.
- W2897587989 cites W2134305330 @default.
- W2897587989 cites W2144301044 @default.
- W2897587989 cites W2146205180 @default.
- W2897587989 cites W2146256171 @default.
- W2897587989 cites W2146873141 @default.
- W2897587989 cites W2152044693 @default.
- W2897587989 cites W2168272860 @default.
- W2897587989 cites W2239920573 @default.
- W2897587989 cites W2267242776 @default.
- W2897587989 cites W2478045598 @default.
- W2897587989 cites W2478760458 @default.
- W2897587989 cites W2521839929 @default.
- W2897587989 cites W2546528931 @default.
- W2897587989 cites W2556294351 @default.
- W2897587989 cites W2587109974 @default.
- W2897587989 cites W2600670849 @default.
- W2897587989 cites W2625805440 @default.
- W2897587989 cites W2655824372 @default.
- W2897587989 cites W2737347830 @default.
- W2897587989 cites W2746747038 @default.
- W2897587989 cites W2754770735 @default.
- W2897587989 cites W2769267335 @default.
- W2897587989 cites W2770943402 @default.
- W2897587989 cites W2777841354 @default.
- W2897587989 cites W2791197088 @default.
- W2897587989 cites W4211189621 @default.
- W2897587989 cites W4231265947 @default.
- W2897587989 cites W4249129794 @default.
- W2897587989 cites W6668765 @default.
- W2897587989 cites W987539735 @default.
- W2897587989 doi "https://doi.org/10.1017/s0033291718002866" @default.
- W2897587989 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30306886" @default.
- W2897587989 hasPublicationYear "2018" @default.
- W2897587989 type Work @default.
- W2897587989 sameAs 2897587989 @default.
- W2897587989 citedByCount "40" @default.
- W2897587989 countsByYear W28975879892019 @default.
- W2897587989 countsByYear W28975879892020 @default.
- W2897587989 countsByYear W28975879892021 @default.
- W2897587989 countsByYear W28975879892022 @default.
- W2897587989 countsByYear W28975879892023 @default.
- W2897587989 crossrefType "journal-article" @default.
- W2897587989 hasAuthorship W2897587989A5018283074 @default.
- W2897587989 hasAuthorship W2897587989A5020196831 @default.
- W2897587989 hasAuthorship W2897587989A5051255489 @default.
- W2897587989 hasAuthorship W2897587989A5054146035 @default.
- W2897587989 hasAuthorship W2897587989A5062351189 @default.
- W2897587989 hasAuthorship W2897587989A5069979654 @default.