Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897591836> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2897591836 abstract "Time series prediction typically consists of a data reconstruction phase where the time series is broken into overlapping windows. The size of the window could vary for different types of problems for optimal performance. Dynamic time series prediction refers to “on the fly’’ robust prediction given partial information where prediction can be made regardless of the window size. Multi-task learning features learning from related tasks through shared representation knowledge which has shown to be useful for dynamic time series prediction. This features uncertainty that can be addressed through synergy of Bayesian inference and multi-task learning. In this paper, we present a Bayesian approach to multi-task learning for dynamic time series prediction. The method provides uncertainty quantification given posterior distribution of weights and biases in a cascaded multitask network architecture. The results show that the proposed method is able to provide competing prediction performance to the literature, featuring uncertainty quantification in prediction." @default.
- W2897591836 created "2018-10-26" @default.
- W2897591836 creator A5022668218 @default.
- W2897591836 creator A5043246042 @default.
- W2897591836 date "2018-07-01" @default.
- W2897591836 modified "2023-09-25" @default.
- W2897591836 title "Bayesian Multi-task Learning for Dynamic Time Series Prediction" @default.
- W2897591836 cites W1493454484 @default.
- W2897591836 cites W1549386224 @default.
- W2897591836 cites W172742023 @default.
- W2897591836 cites W1986744686 @default.
- W2897591836 cites W1994916152 @default.
- W2897591836 cites W2030597423 @default.
- W2897591836 cites W2034295546 @default.
- W2897591836 cites W2047229728 @default.
- W2897591836 cites W2053681597 @default.
- W2897591836 cites W2065385043 @default.
- W2897591836 cites W2092172498 @default.
- W2897591836 cites W2100040626 @default.
- W2897591836 cites W2111051539 @default.
- W2897591836 cites W2124290836 @default.
- W2897591836 cites W2134982367 @default.
- W2897591836 cites W2138784882 @default.
- W2897591836 cites W2170189046 @default.
- W2897591836 cites W2172198266 @default.
- W2897591836 cites W2213118230 @default.
- W2897591836 cites W2236206745 @default.
- W2897591836 cites W2241525425 @default.
- W2897591836 cites W2413527939 @default.
- W2897591836 cites W2593430120 @default.
- W2897591836 cites W2765333693 @default.
- W2897591836 cites W2765770947 @default.
- W2897591836 cites W2913340405 @default.
- W2897591836 cites W2913728931 @default.
- W2897591836 cites W2950942124 @default.
- W2897591836 doi "https://doi.org/10.1109/ijcnn.2018.8489323" @default.
- W2897591836 hasPublicationYear "2018" @default.
- W2897591836 type Work @default.
- W2897591836 sameAs 2897591836 @default.
- W2897591836 citedByCount "2" @default.
- W2897591836 countsByYear W28975918362020 @default.
- W2897591836 countsByYear W28975918362022 @default.
- W2897591836 crossrefType "proceedings-article" @default.
- W2897591836 hasAuthorship W2897591836A5022668218 @default.
- W2897591836 hasAuthorship W2897591836A5043246042 @default.
- W2897591836 hasConcept C107673813 @default.
- W2897591836 hasConcept C119857082 @default.
- W2897591836 hasConcept C127413603 @default.
- W2897591836 hasConcept C143724316 @default.
- W2897591836 hasConcept C151406439 @default.
- W2897591836 hasConcept C151730666 @default.
- W2897591836 hasConcept C154945302 @default.
- W2897591836 hasConcept C201995342 @default.
- W2897591836 hasConcept C2780451532 @default.
- W2897591836 hasConcept C41008148 @default.
- W2897591836 hasConcept C82142266 @default.
- W2897591836 hasConcept C86803240 @default.
- W2897591836 hasConceptScore W2897591836C107673813 @default.
- W2897591836 hasConceptScore W2897591836C119857082 @default.
- W2897591836 hasConceptScore W2897591836C127413603 @default.
- W2897591836 hasConceptScore W2897591836C143724316 @default.
- W2897591836 hasConceptScore W2897591836C151406439 @default.
- W2897591836 hasConceptScore W2897591836C151730666 @default.
- W2897591836 hasConceptScore W2897591836C154945302 @default.
- W2897591836 hasConceptScore W2897591836C201995342 @default.
- W2897591836 hasConceptScore W2897591836C2780451532 @default.
- W2897591836 hasConceptScore W2897591836C41008148 @default.
- W2897591836 hasConceptScore W2897591836C82142266 @default.
- W2897591836 hasConceptScore W2897591836C86803240 @default.
- W2897591836 hasLocation W28975918361 @default.
- W2897591836 hasOpenAccess W2897591836 @default.
- W2897591836 hasPrimaryLocation W28975918361 @default.
- W2897591836 hasRelatedWork W1652495658 @default.
- W2897591836 hasRelatedWork W1775745059 @default.
- W2897591836 hasRelatedWork W1976028601 @default.
- W2897591836 hasRelatedWork W2012733121 @default.
- W2897591836 hasRelatedWork W2107275970 @default.
- W2897591836 hasRelatedWork W2128527868 @default.
- W2897591836 hasRelatedWork W2809597003 @default.
- W2897591836 hasRelatedWork W2897591836 @default.
- W2897591836 hasRelatedWork W2902946190 @default.
- W2897591836 hasRelatedWork W3049019266 @default.
- W2897591836 isParatext "false" @default.
- W2897591836 isRetracted "false" @default.
- W2897591836 magId "2897591836" @default.
- W2897591836 workType "article" @default.