Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897594497> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2897594497 abstract "With the advancement of smart grid construction, the power data generated during power production and use is becoming more and more abundant. The use of big data technology for load forecasting is of great significance in guiding the planning and operation of power systems. This paper comprehensively considers the impact of economic and meteorological factors on the load characteristics, decomposes the total load into the basic load affected by the economy and the meteorological sensitive load affected by meteorological factors. Then the linear regression method and the random forest regression (RFR) in big data technology were used to model the two. Finally, the wavelet neural network (WNN) algorithm is used to intelligently correct the prediction results. Comparing the above method with the prediction results of a region without wavelet neural network method and support vector machine (SVM) method, the proposed method has higher prediction accuracy." @default.
- W2897594497 created "2018-10-26" @default.
- W2897594497 creator A5000828146 @default.
- W2897594497 creator A5045773186 @default.
- W2897594497 creator A5045820740 @default.
- W2897594497 creator A5048242953 @default.
- W2897594497 creator A5055202716 @default.
- W2897594497 creator A5087909151 @default.
- W2897594497 date "2018-06-01" @default.
- W2897594497 modified "2023-10-16" @default.
- W2897594497 title "Research on Medium-Long Term Power Load Forecasting Method Based on Load Decomposition and Big Data Technology" @default.
- W2897594497 cites W2963100393 @default.
- W2897594497 doi "https://doi.org/10.1109/icsgea.2018.00020" @default.
- W2897594497 hasPublicationYear "2018" @default.
- W2897594497 type Work @default.
- W2897594497 sameAs 2897594497 @default.
- W2897594497 citedByCount "5" @default.
- W2897594497 countsByYear W28975944972019 @default.
- W2897594497 countsByYear W28975944972022 @default.
- W2897594497 countsByYear W28975944972023 @default.
- W2897594497 crossrefType "proceedings-article" @default.
- W2897594497 hasAuthorship W2897594497A5000828146 @default.
- W2897594497 hasAuthorship W2897594497A5045773186 @default.
- W2897594497 hasAuthorship W2897594497A5045820740 @default.
- W2897594497 hasAuthorship W2897594497A5048242953 @default.
- W2897594497 hasAuthorship W2897594497A5055202716 @default.
- W2897594497 hasAuthorship W2897594497A5087909151 @default.
- W2897594497 hasConcept C10558101 @default.
- W2897594497 hasConcept C119599485 @default.
- W2897594497 hasConcept C121332964 @default.
- W2897594497 hasConcept C12267149 @default.
- W2897594497 hasConcept C124101348 @default.
- W2897594497 hasConcept C127413603 @default.
- W2897594497 hasConcept C154945302 @default.
- W2897594497 hasConcept C163258240 @default.
- W2897594497 hasConcept C169258074 @default.
- W2897594497 hasConcept C41008148 @default.
- W2897594497 hasConcept C47432892 @default.
- W2897594497 hasConcept C50644808 @default.
- W2897594497 hasConcept C61797465 @default.
- W2897594497 hasConcept C62520636 @default.
- W2897594497 hasConcept C75684735 @default.
- W2897594497 hasConcept C77715397 @default.
- W2897594497 hasConcept C89227174 @default.
- W2897594497 hasConceptScore W2897594497C10558101 @default.
- W2897594497 hasConceptScore W2897594497C119599485 @default.
- W2897594497 hasConceptScore W2897594497C121332964 @default.
- W2897594497 hasConceptScore W2897594497C12267149 @default.
- W2897594497 hasConceptScore W2897594497C124101348 @default.
- W2897594497 hasConceptScore W2897594497C127413603 @default.
- W2897594497 hasConceptScore W2897594497C154945302 @default.
- W2897594497 hasConceptScore W2897594497C163258240 @default.
- W2897594497 hasConceptScore W2897594497C169258074 @default.
- W2897594497 hasConceptScore W2897594497C41008148 @default.
- W2897594497 hasConceptScore W2897594497C47432892 @default.
- W2897594497 hasConceptScore W2897594497C50644808 @default.
- W2897594497 hasConceptScore W2897594497C61797465 @default.
- W2897594497 hasConceptScore W2897594497C62520636 @default.
- W2897594497 hasConceptScore W2897594497C75684735 @default.
- W2897594497 hasConceptScore W2897594497C77715397 @default.
- W2897594497 hasConceptScore W2897594497C89227174 @default.
- W2897594497 hasLocation W28975944971 @default.
- W2897594497 hasOpenAccess W2897594497 @default.
- W2897594497 hasPrimaryLocation W28975944971 @default.
- W2897594497 hasRelatedWork W2140937121 @default.
- W2897594497 hasRelatedWork W2370351027 @default.
- W2897594497 hasRelatedWork W2371877363 @default.
- W2897594497 hasRelatedWork W2390594737 @default.
- W2897594497 hasRelatedWork W2598601173 @default.
- W2897594497 hasRelatedWork W3011592978 @default.
- W2897594497 hasRelatedWork W3195168932 @default.
- W2897594497 hasRelatedWork W4200112873 @default.
- W2897594497 hasRelatedWork W4220933319 @default.
- W2897594497 hasRelatedWork W4243590073 @default.
- W2897594497 isParatext "false" @default.
- W2897594497 isRetracted "false" @default.
- W2897594497 magId "2897594497" @default.
- W2897594497 workType "article" @default.