Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897618417> ?p ?o ?g. }
- W2897618417 endingPage "313" @default.
- W2897618417 startingPage "306" @default.
- W2897618417 abstract "Providing an accurate prediction of mortality risk for patients in the health care system as early as possible could help improve care quality and reduce costs. The recent adoption of Electronic Health Records (EHRs) has created an opportunity to improve prediction accuracy by obtaining more detailed data and applying more advanced algorithms. In this work, we applied gradient boosted trees and deep neural networks to estimate the mortality risk of patients admitted to a single institution’s Intensive Care Units (ICUs). Unlike the prior studies that utilize a rich set of features usually available at discharge, we used commonly available data in EHRs at the time of admission. We used a subset of MIMIC III of 4,440 admissions between 2001 and 2012 to extract demographic information (age, gender, marital status, etc.), diagnosis and medical (ICD) codes. The model achieved 87.30 AUC on the 10% test set. The excellent performance of the model highlights the usability of models with few features for building real-world prediction engines." @default.
- W2897618417 created "2018-10-26" @default.
- W2897618417 creator A5026260403 @default.
- W2897618417 creator A5030321903 @default.
- W2897618417 creator A5040992156 @default.
- W2897618417 creator A5048176346 @default.
- W2897618417 creator A5050703323 @default.
- W2897618417 date "2018-01-01" @default.
- W2897618417 modified "2023-10-13" @default.
- W2897618417 title "Forecasting Mortality Risk for Patients Admitted to Intensive Care Units Using Machine Learning" @default.
- W2897618417 cites W1484146179 @default.
- W2897618417 cites W1983024255 @default.
- W2897618417 cites W1999064900 @default.
- W2897618417 cites W2033609349 @default.
- W2897618417 cites W2062410604 @default.
- W2897618417 cites W2069340802 @default.
- W2897618417 cites W2094847119 @default.
- W2897618417 cites W2118978333 @default.
- W2897618417 cites W2121111947 @default.
- W2897618417 cites W2132927459 @default.
- W2897618417 cites W2144394616 @default.
- W2897618417 cites W2164330572 @default.
- W2897618417 cites W2171826252 @default.
- W2897618417 cites W2200122354 @default.
- W2897618417 cites W2250539671 @default.
- W2897618417 cites W236448318 @default.
- W2897618417 cites W2395172628 @default.
- W2897618417 cites W2396881363 @default.
- W2897618417 cites W2518269322 @default.
- W2897618417 cites W2561981131 @default.
- W2897618417 cites W2764165920 @default.
- W2897618417 cites W2919115771 @default.
- W2897618417 cites W4250251700 @default.
- W2897618417 cites W4255113605 @default.
- W2897618417 cites W4296886862 @default.
- W2897618417 cites W5767126 @default.
- W2897618417 doi "https://doi.org/10.1016/j.procs.2018.10.313" @default.
- W2897618417 hasPublicationYear "2018" @default.
- W2897618417 type Work @default.
- W2897618417 sameAs 2897618417 @default.
- W2897618417 citedByCount "25" @default.
- W2897618417 countsByYear W28976184172020 @default.
- W2897618417 countsByYear W28976184172021 @default.
- W2897618417 countsByYear W28976184172022 @default.
- W2897618417 countsByYear W28976184172023 @default.
- W2897618417 crossrefType "journal-article" @default.
- W2897618417 hasAuthorship W2897618417A5026260403 @default.
- W2897618417 hasAuthorship W2897618417A5030321903 @default.
- W2897618417 hasAuthorship W2897618417A5040992156 @default.
- W2897618417 hasAuthorship W2897618417A5048176346 @default.
- W2897618417 hasAuthorship W2897618417A5050703323 @default.
- W2897618417 hasBestOaLocation W28976184171 @default.
- W2897618417 hasConcept C107457646 @default.
- W2897618417 hasConcept C119857082 @default.
- W2897618417 hasConcept C124101348 @default.
- W2897618417 hasConcept C126838900 @default.
- W2897618417 hasConcept C154945302 @default.
- W2897618417 hasConcept C160735492 @default.
- W2897618417 hasConcept C162324750 @default.
- W2897618417 hasConcept C169903167 @default.
- W2897618417 hasConcept C170130773 @default.
- W2897618417 hasConcept C177264268 @default.
- W2897618417 hasConcept C177713679 @default.
- W2897618417 hasConcept C195910791 @default.
- W2897618417 hasConcept C199360897 @default.
- W2897618417 hasConcept C2987404301 @default.
- W2897618417 hasConcept C3019952477 @default.
- W2897618417 hasConcept C41008148 @default.
- W2897618417 hasConcept C50522688 @default.
- W2897618417 hasConcept C50644808 @default.
- W2897618417 hasConcept C58489278 @default.
- W2897618417 hasConcept C71924100 @default.
- W2897618417 hasConceptScore W2897618417C107457646 @default.
- W2897618417 hasConceptScore W2897618417C119857082 @default.
- W2897618417 hasConceptScore W2897618417C124101348 @default.
- W2897618417 hasConceptScore W2897618417C126838900 @default.
- W2897618417 hasConceptScore W2897618417C154945302 @default.
- W2897618417 hasConceptScore W2897618417C160735492 @default.
- W2897618417 hasConceptScore W2897618417C162324750 @default.
- W2897618417 hasConceptScore W2897618417C169903167 @default.
- W2897618417 hasConceptScore W2897618417C170130773 @default.
- W2897618417 hasConceptScore W2897618417C177264268 @default.
- W2897618417 hasConceptScore W2897618417C177713679 @default.
- W2897618417 hasConceptScore W2897618417C195910791 @default.
- W2897618417 hasConceptScore W2897618417C199360897 @default.
- W2897618417 hasConceptScore W2897618417C2987404301 @default.
- W2897618417 hasConceptScore W2897618417C3019952477 @default.
- W2897618417 hasConceptScore W2897618417C41008148 @default.
- W2897618417 hasConceptScore W2897618417C50522688 @default.
- W2897618417 hasConceptScore W2897618417C50644808 @default.
- W2897618417 hasConceptScore W2897618417C58489278 @default.
- W2897618417 hasConceptScore W2897618417C71924100 @default.
- W2897618417 hasLocation W28976184171 @default.
- W2897618417 hasOpenAccess W2897618417 @default.
- W2897618417 hasPrimaryLocation W28976184171 @default.
- W2897618417 hasRelatedWork W148745890 @default.
- W2897618417 hasRelatedWork W1990237101 @default.
- W2897618417 hasRelatedWork W2183488467 @default.