Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897619751> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2897619751 abstract "In 1859 Riemann (1826-1866) published his only paper on number theory. In this eight-page paper he obtained a formula for the number of primes less than or equal to a real number x, and revealed the deep connection between the distribution of primes and the zeros of an analytic function now called the Riemann Zeta Function. In the early 1930's two related unpublished results from 1859 were found in Riemanns very rough notes by the great twentieth century mathematician and scholar, Carl Ludwig Siegel (1896-1981). In his 1932 paper Uber Riemanns Nachlass zur analytischen Zahlentheorie(On Riemann's Nachlass for Analytic Number Theory) Siegel presents these unpublished results and gives derivations he found in Riemann's notes. The first is an asymptotic development, now called the Riemann-Siegel formula, for efficiently computing values of the Riemann Zeta Function. The second is a new integral representation of the zeta function. These results had not been rediscovered seventy years after Riemann. Thus, in 1932 the importance of Siegel's paper was not only its contribution to the history of mathematics, but also its contribution to current research. Hoping to get some insight into how Siegel spotted and deciphered these gems among Riemann's fragmentary and disordered personnel papers, we decided to look at the 1932 paper. We also wanted to learn how much of the paper is original to Riemann and whether Siegel needed to fill any gaps. Although Siegel's paper is cited whenever the Riemann-Siegel formula is discussed, we were unable the locate an English translation. Despite our limited knowledge of the German language, we have produced a translation of the paper as it appears in volume one of Siegel's collected works." @default.
- W2897619751 created "2018-10-26" @default.
- W2897619751 creator A5077513014 @default.
- W2897619751 creator A5091037374 @default.
- W2897619751 date "2018-10-11" @default.
- W2897619751 modified "2023-09-27" @default.
- W2897619751 title "On Riemanns Nachlass for Analytic Number Theory: A translation of Siegel's Uber" @default.
- W2897619751 hasPublicationYear "2018" @default.
- W2897619751 type Work @default.
- W2897619751 sameAs 2897619751 @default.
- W2897619751 citedByCount "2" @default.
- W2897619751 countsByYear W28976197512018 @default.
- W2897619751 countsByYear W28976197512019 @default.
- W2897619751 crossrefType "posted-content" @default.
- W2897619751 hasAuthorship W2897619751A5077513014 @default.
- W2897619751 hasAuthorship W2897619751A5091037374 @default.
- W2897619751 hasConcept C111993293 @default.
- W2897619751 hasConcept C113429393 @default.
- W2897619751 hasConcept C118615104 @default.
- W2897619751 hasConcept C136119220 @default.
- W2897619751 hasConcept C14036430 @default.
- W2897619751 hasConcept C145420912 @default.
- W2897619751 hasConcept C149381693 @default.
- W2897619751 hasConcept C169654258 @default.
- W2897619751 hasConcept C199479865 @default.
- W2897619751 hasConcept C202444582 @default.
- W2897619751 hasConcept C28581250 @default.
- W2897619751 hasConcept C33923547 @default.
- W2897619751 hasConcept C35235930 @default.
- W2897619751 hasConcept C40758505 @default.
- W2897619751 hasConcept C48902493 @default.
- W2897619751 hasConcept C72074766 @default.
- W2897619751 hasConcept C78458016 @default.
- W2897619751 hasConcept C86803240 @default.
- W2897619751 hasConceptScore W2897619751C111993293 @default.
- W2897619751 hasConceptScore W2897619751C113429393 @default.
- W2897619751 hasConceptScore W2897619751C118615104 @default.
- W2897619751 hasConceptScore W2897619751C136119220 @default.
- W2897619751 hasConceptScore W2897619751C14036430 @default.
- W2897619751 hasConceptScore W2897619751C145420912 @default.
- W2897619751 hasConceptScore W2897619751C149381693 @default.
- W2897619751 hasConceptScore W2897619751C169654258 @default.
- W2897619751 hasConceptScore W2897619751C199479865 @default.
- W2897619751 hasConceptScore W2897619751C202444582 @default.
- W2897619751 hasConceptScore W2897619751C28581250 @default.
- W2897619751 hasConceptScore W2897619751C33923547 @default.
- W2897619751 hasConceptScore W2897619751C35235930 @default.
- W2897619751 hasConceptScore W2897619751C40758505 @default.
- W2897619751 hasConceptScore W2897619751C48902493 @default.
- W2897619751 hasConceptScore W2897619751C72074766 @default.
- W2897619751 hasConceptScore W2897619751C78458016 @default.
- W2897619751 hasConceptScore W2897619751C86803240 @default.
- W2897619751 hasLocation W28976197511 @default.
- W2897619751 hasOpenAccess W2897619751 @default.
- W2897619751 hasPrimaryLocation W28976197511 @default.
- W2897619751 hasRelatedWork W116430096 @default.
- W2897619751 hasRelatedWork W148846636 @default.
- W2897619751 hasRelatedWork W1971118808 @default.
- W2897619751 hasRelatedWork W2053828038 @default.
- W2897619751 hasRelatedWork W2192544273 @default.
- W2897619751 hasRelatedWork W226771235 @default.
- W2897619751 hasRelatedWork W2518842236 @default.
- W2897619751 hasRelatedWork W2560934920 @default.
- W2897619751 hasRelatedWork W2591706499 @default.
- W2897619751 hasRelatedWork W2755395268 @default.
- W2897619751 hasRelatedWork W2758098585 @default.
- W2897619751 hasRelatedWork W2953077608 @default.
- W2897619751 hasRelatedWork W2963135671 @default.
- W2897619751 hasRelatedWork W3080577784 @default.
- W2897619751 hasRelatedWork W3082000210 @default.
- W2897619751 hasRelatedWork W3085460543 @default.
- W2897619751 hasRelatedWork W4001465 @default.
- W2897619751 hasRelatedWork W626428430 @default.
- W2897619751 hasRelatedWork W986058630 @default.
- W2897619751 hasRelatedWork W3146313328 @default.
- W2897619751 isParatext "false" @default.
- W2897619751 isRetracted "false" @default.
- W2897619751 magId "2897619751" @default.
- W2897619751 workType "article" @default.