Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897619937> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2897619937 abstract "This article explores the use of deep learning for malware identification in the Android operating system. Similar studies are considered and, based on their drawbacks, a self-designed approach is proposed for representing an Android application for a convolutional neural network, which consists in constructing an RGB image, the pixels of which are formed from a sequence of pairs of API calls and protection levels. The results of the experimental evaluation of the proposed approach, which are presented in this paper, demonstrate its high efficiency for solving the problem of identifying malicious Android applications." @default.
- W2897619937 created "2018-10-26" @default.
- W2897619937 creator A5008712263 @default.
- W2897619937 creator A5064696677 @default.
- W2897619937 creator A5082848822 @default.
- W2897619937 creator A5088868306 @default.
- W2897619937 date "2018-09-10" @default.
- W2897619937 modified "2023-09-30" @default.
- W2897619937 title "Applying deep learning techniques for Android malware detection" @default.
- W2897619937 cites W2002478203 @default.
- W2897619937 cites W2140095007 @default.
- W2897619937 cites W2313513770 @default.
- W2897619937 cites W2563758005 @default.
- W2897619937 cites W2599823825 @default.
- W2897619937 cites W2785297793 @default.
- W2897619937 cites W2791905499 @default.
- W2897619937 cites W2963401022 @default.
- W2897619937 cites W2964136807 @default.
- W2897619937 doi "https://doi.org/10.1145/3264437.3264476" @default.
- W2897619937 hasPublicationYear "2018" @default.
- W2897619937 type Work @default.
- W2897619937 sameAs 2897619937 @default.
- W2897619937 citedByCount "23" @default.
- W2897619937 countsByYear W28976199372019 @default.
- W2897619937 countsByYear W28976199372020 @default.
- W2897619937 countsByYear W28976199372021 @default.
- W2897619937 countsByYear W28976199372022 @default.
- W2897619937 countsByYear W28976199372023 @default.
- W2897619937 crossrefType "proceedings-article" @default.
- W2897619937 hasAuthorship W2897619937A5008712263 @default.
- W2897619937 hasAuthorship W2897619937A5064696677 @default.
- W2897619937 hasAuthorship W2897619937A5082848822 @default.
- W2897619937 hasAuthorship W2897619937A5088868306 @default.
- W2897619937 hasConcept C108583219 @default.
- W2897619937 hasConcept C111919701 @default.
- W2897619937 hasConcept C154945302 @default.
- W2897619937 hasConcept C2989133298 @default.
- W2897619937 hasConcept C38652104 @default.
- W2897619937 hasConcept C41008148 @default.
- W2897619937 hasConcept C541664917 @default.
- W2897619937 hasConcept C557433098 @default.
- W2897619937 hasConceptScore W2897619937C108583219 @default.
- W2897619937 hasConceptScore W2897619937C111919701 @default.
- W2897619937 hasConceptScore W2897619937C154945302 @default.
- W2897619937 hasConceptScore W2897619937C2989133298 @default.
- W2897619937 hasConceptScore W2897619937C38652104 @default.
- W2897619937 hasConceptScore W2897619937C41008148 @default.
- W2897619937 hasConceptScore W2897619937C541664917 @default.
- W2897619937 hasConceptScore W2897619937C557433098 @default.
- W2897619937 hasLocation W28976199371 @default.
- W2897619937 hasOpenAccess W2897619937 @default.
- W2897619937 hasPrimaryLocation W28976199371 @default.
- W2897619937 hasRelatedWork W1981999315 @default.
- W2897619937 hasRelatedWork W2182640579 @default.
- W2897619937 hasRelatedWork W2389253938 @default.
- W2897619937 hasRelatedWork W2776539682 @default.
- W2897619937 hasRelatedWork W2922526186 @default.
- W2897619937 hasRelatedWork W3012546138 @default.
- W2897619937 hasRelatedWork W3014124958 @default.
- W2897619937 hasRelatedWork W3195312353 @default.
- W2897619937 hasRelatedWork W3211751213 @default.
- W2897619937 hasRelatedWork W4287822221 @default.
- W2897619937 isParatext "false" @default.
- W2897619937 isRetracted "false" @default.
- W2897619937 magId "2897619937" @default.
- W2897619937 workType "article" @default.