Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897623414> ?p ?o ?g. }
- W2897623414 endingPage "1148" @default.
- W2897623414 startingPage "1133" @default.
- W2897623414 abstract "Automated recognition of mouse behaviors is crucial in studying psychiatric and neurologic diseases. To achieve this objective, it is very important to analyze the temporal dynamics of mouse behaviors. In particular, the change between mouse neighboring actions is swift in a short period. In this paper, we develop and implement a novel hidden Markov model (HMM) algorithm to describe the temporal characteristics of mouse behaviors. In particular, we here propose a hybrid deep learning architecture, where the first unsupervised layer relies on an advanced spatial-temporal segment Fisher vector encoding both visual and contextual features. Subsequent supervised layers based on our segment aggregate network are trained to estimate the state-dependent observation probabilities of the HMM. The proposed architecture shows the ability to discriminate between visually similar behaviors and results in high recognition rates with the strength of processing imbalanced mouse behavior datasets. Finally, we evaluate our approach using JHuang's and our own datasets, and the results show that our method outperforms other state-of-the-art approaches." @default.
- W2897623414 created "2018-10-26" @default.
- W2897623414 creator A5000739686 @default.
- W2897623414 creator A5001457345 @default.
- W2897623414 creator A5009437198 @default.
- W2897623414 creator A5025120215 @default.
- W2897623414 creator A5051072210 @default.
- W2897623414 creator A5066119228 @default.
- W2897623414 creator A5072861069 @default.
- W2897623414 creator A5074103823 @default.
- W2897623414 creator A5084025984 @default.
- W2897623414 date "2019-03-01" @default.
- W2897623414 modified "2023-10-16" @default.
- W2897623414 title "Context-Aware Mouse Behavior Recognition Using Hidden Markov Models" @default.
- W2897623414 cites W1871385855 @default.
- W2897623414 cites W1944615693 @default.
- W2897623414 cites W1977034183 @default.
- W2897623414 cites W1983364832 @default.
- W2897623414 cites W2010838375 @default.
- W2897623414 cites W2016053056 @default.
- W2897623414 cites W2018196478 @default.
- W2897623414 cites W2020163092 @default.
- W2897623414 cites W2024244622 @default.
- W2897623414 cites W2035222565 @default.
- W2897623414 cites W2039438756 @default.
- W2897623414 cites W2048657095 @default.
- W2897623414 cites W2055767715 @default.
- W2897623414 cites W2068611653 @default.
- W2897623414 cites W2070792803 @default.
- W2897623414 cites W2075760200 @default.
- W2897623414 cites W2082622527 @default.
- W2897623414 cites W2087284982 @default.
- W2897623414 cites W2096691069 @default.
- W2897623414 cites W2097117768 @default.
- W2897623414 cites W2099129729 @default.
- W2897623414 cites W2100969003 @default.
- W2897623414 cites W2105101328 @default.
- W2897623414 cites W2106299403 @default.
- W2897623414 cites W2115730999 @default.
- W2897623414 cites W2122244877 @default.
- W2897623414 cites W2125838338 @default.
- W2897623414 cites W2129376585 @default.
- W2897623414 cites W2131404068 @default.
- W2897623414 cites W2146871184 @default.
- W2897623414 cites W2147393756 @default.
- W2897623414 cites W2148561471 @default.
- W2897623414 cites W2157150618 @default.
- W2897623414 cites W2160557453 @default.
- W2897623414 cites W2162915993 @default.
- W2897623414 cites W2165315123 @default.
- W2897623414 cites W2169368608 @default.
- W2897623414 cites W2205794177 @default.
- W2897623414 cites W2484332996 @default.
- W2897623414 cites W2533739470 @default.
- W2897623414 cites W2613077638 @default.
- W2897623414 doi "https://doi.org/10.1109/tip.2018.2875335" @default.
- W2897623414 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30307863" @default.
- W2897623414 hasPublicationYear "2019" @default.
- W2897623414 type Work @default.
- W2897623414 sameAs 2897623414 @default.
- W2897623414 citedByCount "26" @default.
- W2897623414 countsByYear W28976234142019 @default.
- W2897623414 countsByYear W28976234142020 @default.
- W2897623414 countsByYear W28976234142021 @default.
- W2897623414 countsByYear W28976234142022 @default.
- W2897623414 countsByYear W28976234142023 @default.
- W2897623414 crossrefType "journal-article" @default.
- W2897623414 hasAuthorship W2897623414A5000739686 @default.
- W2897623414 hasAuthorship W2897623414A5001457345 @default.
- W2897623414 hasAuthorship W2897623414A5009437198 @default.
- W2897623414 hasAuthorship W2897623414A5025120215 @default.
- W2897623414 hasAuthorship W2897623414A5051072210 @default.
- W2897623414 hasAuthorship W2897623414A5066119228 @default.
- W2897623414 hasAuthorship W2897623414A5072861069 @default.
- W2897623414 hasAuthorship W2897623414A5074103823 @default.
- W2897623414 hasAuthorship W2897623414A5084025984 @default.
- W2897623414 hasBestOaLocation W28976234142 @default.
- W2897623414 hasConcept C119857082 @default.
- W2897623414 hasConcept C125411270 @default.
- W2897623414 hasConcept C151730666 @default.
- W2897623414 hasConcept C153180895 @default.
- W2897623414 hasConcept C154945302 @default.
- W2897623414 hasConcept C159985019 @default.
- W2897623414 hasConcept C183322885 @default.
- W2897623414 hasConcept C192562407 @default.
- W2897623414 hasConcept C23224414 @default.
- W2897623414 hasConcept C2779343474 @default.
- W2897623414 hasConcept C2781238097 @default.
- W2897623414 hasConcept C41008148 @default.
- W2897623414 hasConcept C4679612 @default.
- W2897623414 hasConcept C86803240 @default.
- W2897623414 hasConceptScore W2897623414C119857082 @default.
- W2897623414 hasConceptScore W2897623414C125411270 @default.
- W2897623414 hasConceptScore W2897623414C151730666 @default.
- W2897623414 hasConceptScore W2897623414C153180895 @default.
- W2897623414 hasConceptScore W2897623414C154945302 @default.
- W2897623414 hasConceptScore W2897623414C159985019 @default.
- W2897623414 hasConceptScore W2897623414C183322885 @default.