Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897630147> ?p ?o ?g. }
- W2897630147 endingPage "34" @default.
- W2897630147 startingPage "26" @default.
- W2897630147 abstract "Online smoking cessation communities help hundreds of thousands of smokers quit smoking and stay abstinent each year. Content shared by users of such communities may contain important information that could enable more effective and personally tailored cessation treatment recommendations. This study demonstrates a novel approach to determine individuals' smoking status by applying machine learning techniques to classify user-generated content in an online cessation community. Study data were from BecomeAnEX.org, a large, online smoking cessation community. We extracted three types of novel features from a post: domain-specific features, author-based features, and thread-based features. These features helped to improve the smoking status identification (quit vs. not) performance by 9.7% compared to using only text features of a post's content. In other words, knowledge from domain experts, data regarding the post author's patterns of online engagement, and other community member reactions to the post can help to determine the focal post author's smoking status, over and above the actual content of a focal post. We demonstrated that machine learning methods can be applied to user-generated data from online cessation communities to validly and reliably discern important user characteristics, which could aid decision support on intervention tailoring." @default.
- W2897630147 created "2018-10-26" @default.
- W2897630147 creator A5005281168 @default.
- W2897630147 creator A5009117381 @default.
- W2897630147 creator A5035246366 @default.
- W2897630147 creator A5040127507 @default.
- W2897630147 creator A5059353295 @default.
- W2897630147 creator A5076192285 @default.
- W2897630147 creator A5077730739 @default.
- W2897630147 creator A5082018245 @default.
- W2897630147 date "2019-01-01" @default.
- W2897630147 modified "2023-10-16" @default.
- W2897630147 title "Mining user-generated content in an online smoking cessation community to identify smoking status: A machine learning approach" @default.
- W2897630147 cites W1483352882 @default.
- W2897630147 cites W1484368424 @default.
- W2897630147 cites W1602694398 @default.
- W2897630147 cites W1992842588 @default.
- W2897630147 cites W1998258026 @default.
- W2897630147 cites W1999197741 @default.
- W2897630147 cites W2006515563 @default.
- W2897630147 cites W2014957303 @default.
- W2897630147 cites W2017399948 @default.
- W2897630147 cites W2020292934 @default.
- W2897630147 cites W2021197154 @default.
- W2897630147 cites W2035228137 @default.
- W2897630147 cites W2035345032 @default.
- W2897630147 cites W2042883777 @default.
- W2897630147 cites W2061125915 @default.
- W2897630147 cites W2067249760 @default.
- W2897630147 cites W2068617799 @default.
- W2897630147 cites W2080741321 @default.
- W2897630147 cites W2086310388 @default.
- W2897630147 cites W2089845746 @default.
- W2897630147 cites W2089910218 @default.
- W2897630147 cites W2091179194 @default.
- W2897630147 cites W2092331785 @default.
- W2897630147 cites W2103945120 @default.
- W2897630147 cites W2109206523 @default.
- W2897630147 cites W2109772398 @default.
- W2897630147 cites W2115129983 @default.
- W2897630147 cites W2120742996 @default.
- W2897630147 cites W2136548128 @default.
- W2897630147 cites W2142311010 @default.
- W2897630147 cites W2146985458 @default.
- W2897630147 cites W2147363989 @default.
- W2897630147 cites W2154013831 @default.
- W2897630147 cites W2158102843 @default.
- W2897630147 cites W2164549731 @default.
- W2897630147 cites W2166806909 @default.
- W2897630147 cites W2168211098 @default.
- W2897630147 cites W2294849308 @default.
- W2897630147 cites W2320574266 @default.
- W2897630147 cites W2337199638 @default.
- W2897630147 cites W2342003409 @default.
- W2897630147 cites W2403410903 @default.
- W2897630147 cites W2409227394 @default.
- W2897630147 cites W2417827962 @default.
- W2897630147 cites W2495018488 @default.
- W2897630147 cites W2510894897 @default.
- W2897630147 cites W2557090320 @default.
- W2897630147 cites W2610156881 @default.
- W2897630147 cites W2731051312 @default.
- W2897630147 cites W2790945727 @default.
- W2897630147 cites W2908084633 @default.
- W2897630147 cites W4232235207 @default.
- W2897630147 cites W4236137412 @default.
- W2897630147 doi "https://doi.org/10.1016/j.dss.2018.10.005" @default.
- W2897630147 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6934371" @default.
- W2897630147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31885411" @default.
- W2897630147 hasPublicationYear "2019" @default.
- W2897630147 type Work @default.
- W2897630147 sameAs 2897630147 @default.
- W2897630147 citedByCount "32" @default.
- W2897630147 countsByYear W28976301472019 @default.
- W2897630147 countsByYear W28976301472020 @default.
- W2897630147 countsByYear W28976301472021 @default.
- W2897630147 countsByYear W28976301472022 @default.
- W2897630147 countsByYear W28976301472023 @default.
- W2897630147 crossrefType "journal-article" @default.
- W2897630147 hasAuthorship W2897630147A5005281168 @default.
- W2897630147 hasAuthorship W2897630147A5009117381 @default.
- W2897630147 hasAuthorship W2897630147A5035246366 @default.
- W2897630147 hasAuthorship W2897630147A5040127507 @default.
- W2897630147 hasAuthorship W2897630147A5059353295 @default.
- W2897630147 hasAuthorship W2897630147A5076192285 @default.
- W2897630147 hasAuthorship W2897630147A5077730739 @default.
- W2897630147 hasAuthorship W2897630147A5082018245 @default.
- W2897630147 hasBestOaLocation W28976301472 @default.
- W2897630147 hasConcept C119857082 @default.
- W2897630147 hasConcept C142724271 @default.
- W2897630147 hasConcept C154945302 @default.
- W2897630147 hasConcept C15744967 @default.
- W2897630147 hasConcept C2777843972 @default.
- W2897630147 hasConcept C3018997237 @default.
- W2897630147 hasConcept C41008148 @default.
- W2897630147 hasConcept C71924100 @default.
- W2897630147 hasConceptScore W2897630147C119857082 @default.
- W2897630147 hasConceptScore W2897630147C142724271 @default.