Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897633168> ?p ?o ?g. }
- W2897633168 endingPage "1043" @default.
- W2897633168 startingPage "1028" @default.
- W2897633168 abstract "Dehydrofreezing process involves water partial removal before freezing. This treatment has been proposed in order to reduce the negative impacts of conventional or even accelerated freezing, especially on the textural quality of high water content fruits and vegetables. Indeed, in such cases, freezing and thawing processes result in severe damage of the integrity of product’s cell structure due to the formation of ice crystals. For this purpose, quince fruits (7 g H2O/g db) were subjected to convective air drying of 40 °C and 3m/s to reach different water content levels of 2, 1, and 0.3 g H2O/g db. Freezing profiles obtained at various freezing rates (V1, V2, and V3) for different water contents allowed the main freezing characteristics such as the Initial Freezing Temperature (IFT), the Practical Freezing time (PFt), and the Specific Freezing time (SFt) to be assessed. The impact of freezing rate was important on PFt and SFt, and more pronounced for high water contents (W between 7 and 2 g H2O/g db (dry basis)). Furthermore, IFT decreased sharply when initial sample water content decreased. Indeed, it started at −0.8 °C for W = 7g H2O/g db, while it reached a value of −8.2 °C for samples of W = 1g H2O/g db. Since convective air drying normally triggers shrinkage which causes a detrimental deformation of fruit structures, instant controlled pressure drop (DIC) treatment was used to improve the texture and enhance the whole dehydrofreezing performance and the final frozen-thawed product quality. Moreover, DIC implied a slight increase of PFt compared to untreated ones. On the other hand, quality attributes were estimated through the assessment of thawed water exudate (TWE g H2O/100 g db), color and texture (maximum puncture force as index of firmness): freezing rate and water content had great impacts on TWE. Hence, the lower the water content, the weaker the TWE. Furthermore, the TWE of the pre-dried quince (0.3 g H2O/g db) had higher value for DIC-textured samples than for the un-treated ones. Indeed, DIC-texturing leads to a well-controlled structure expansion of the cell wall. These textural changes resulted in more lixiviation of residual water. Consequently, water becomes more available, hence more releasable after thawing. Finally, the partial removal of water by air drying before freezing remarkably reduced the negative impact of freezing/thawing processes on final quince color. Decisively, the firmness of quince fruit increased with the decrease of water content level.Abbreviations: DMC: Dry Matter Concentration (%); DIC: Instant controlled pressure drop; W: Water content dry basis (g H2O/g db); IFT: Initial Freezing Temperature (°C); PFt: Practical Freezing time (min); SFt: Specific Freezing time (min); TWE: Thawed Water Exudate (g H2O/100 g db); L, a, and b: Color coordinates; (L): The degrees of lightness; (a) and (–a): The redness (a) or greenness (−a), respectively; (b) and (−b): The yellowness (b) or blueness (−b), respectively; ΔE*ab: Total color difference; L0, a0, and b0: Color coordinates of fresh or dried quince samples; SD: Standard Deviation; ANOVA: Analysis of variances; LSD: Least Significant Differences; cp: Specific Heat of the product depending on composition (dry material and water content)(KJ/kg K); cpd: Specific Heat of the dry material (KJ/kg K); cpW: Specific Heat of water (KJ/kg K); V1: Freezing rate without insulation; V2: Freezing rate with a food stretch film insulation with thickness e2 = 3 mm and thermal conductivity λ2 = 0.17 W/m K; V3: Freezing rate with a versatile flexible insulation (Armacell) with thickness e3 = 13mm and weak thermal conductivity λ3 = 0.036 W/m K; vd: Volume of dry material of quince sample (mm3); vH2O: Volume of quince sample water (mm3); vt: Total volume of quince sample (mm3); e0: Quince sample thickness (mm); e2: Insulation thickness in the case V2; = 3 mm; ; e3: Insulation thickness in the case V3; = 13 mm; ; λ0: Quince sample conductivity (W/m K); λ2: Insulation conductivity in the case V2; = 0.17 W/m K; ; λ3: Insulation conductivity in the case V3; = 0.036 W/m K; λd: Conductivity of quince sample dry material (W/m K); λH2O: Conductivity of water (W/m K); λequiv: Equivalent conductivity of quince sample versus water content (W/m K); mi and mf: Weights of the frozen and thawed samples, respectively" @default.
- W2897633168 created "2018-10-26" @default.
- W2897633168 creator A5018392997 @default.
- W2897633168 creator A5053636235 @default.
- W2897633168 creator A5074405239 @default.
- W2897633168 creator A5075984141 @default.
- W2897633168 date "2018-10-08" @default.
- W2897633168 modified "2023-09-25" @default.
- W2897633168 title "Impact of initial moisture content levels, freezing rate and instant controlled pressure drop treatment (DIC) on dehydrofreezing process and quality attributes of quince fruits" @default.
- W2897633168 cites W1480477556 @default.
- W2897633168 cites W1668691514 @default.
- W2897633168 cites W1710665456 @default.
- W2897633168 cites W1835602879 @default.
- W2897633168 cites W1966479907 @default.
- W2897633168 cites W1970216748 @default.
- W2897633168 cites W1973316242 @default.
- W2897633168 cites W1973832264 @default.
- W2897633168 cites W1977424838 @default.
- W2897633168 cites W1980193973 @default.
- W2897633168 cites W1981047559 @default.
- W2897633168 cites W1990410344 @default.
- W2897633168 cites W1994964374 @default.
- W2897633168 cites W1999857643 @default.
- W2897633168 cites W2006947028 @default.
- W2897633168 cites W2007486935 @default.
- W2897633168 cites W2008015803 @default.
- W2897633168 cites W2008668794 @default.
- W2897633168 cites W2008937363 @default.
- W2897633168 cites W2015456792 @default.
- W2897633168 cites W2015641726 @default.
- W2897633168 cites W2016110344 @default.
- W2897633168 cites W2016495913 @default.
- W2897633168 cites W2019184990 @default.
- W2897633168 cites W2030762638 @default.
- W2897633168 cites W2034590027 @default.
- W2897633168 cites W2034871965 @default.
- W2897633168 cites W2035990008 @default.
- W2897633168 cites W2036603109 @default.
- W2897633168 cites W2038070318 @default.
- W2897633168 cites W2041306349 @default.
- W2897633168 cites W2043062206 @default.
- W2897633168 cites W2044578114 @default.
- W2897633168 cites W2060192439 @default.
- W2897633168 cites W2064219501 @default.
- W2897633168 cites W2067400597 @default.
- W2897633168 cites W2070375333 @default.
- W2897633168 cites W2076217653 @default.
- W2897633168 cites W2079699930 @default.
- W2897633168 cites W2085380658 @default.
- W2897633168 cites W2086176907 @default.
- W2897633168 cites W2086705740 @default.
- W2897633168 cites W2099030818 @default.
- W2897633168 cites W2113819337 @default.
- W2897633168 cites W2114204884 @default.
- W2897633168 cites W2124398555 @default.
- W2897633168 cites W2135937053 @default.
- W2897633168 cites W2145688424 @default.
- W2897633168 cites W2162204902 @default.
- W2897633168 cites W2165495745 @default.
- W2897633168 cites W2276631145 @default.
- W2897633168 cites W2320440993 @default.
- W2897633168 cites W2323137493 @default.
- W2897633168 cites W2331656000 @default.
- W2897633168 cites W2332217956 @default.
- W2897633168 cites W2506854649 @default.
- W2897633168 cites W2555615743 @default.
- W2897633168 cites W2747908604 @default.
- W2897633168 cites W590099280 @default.
- W2897633168 doi "https://doi.org/10.1080/07373937.2018.1481867" @default.
- W2897633168 hasPublicationYear "2018" @default.
- W2897633168 type Work @default.
- W2897633168 sameAs 2897633168 @default.
- W2897633168 citedByCount "12" @default.
- W2897633168 countsByYear W28976331682019 @default.
- W2897633168 countsByYear W28976331682020 @default.
- W2897633168 countsByYear W28976331682021 @default.
- W2897633168 countsByYear W28976331682022 @default.
- W2897633168 countsByYear W28976331682023 @default.
- W2897633168 crossrefType "journal-article" @default.
- W2897633168 hasAuthorship W2897633168A5018392997 @default.
- W2897633168 hasAuthorship W2897633168A5053636235 @default.
- W2897633168 hasAuthorship W2897633168A5074405239 @default.
- W2897633168 hasAuthorship W2897633168A5075984141 @default.
- W2897633168 hasConcept C121332964 @default.
- W2897633168 hasConcept C125388846 @default.
- W2897633168 hasConcept C127413603 @default.
- W2897633168 hasConcept C153294291 @default.
- W2897633168 hasConcept C159985019 @default.
- W2897633168 hasConcept C180145272 @default.
- W2897633168 hasConcept C185592680 @default.
- W2897633168 hasConcept C187320778 @default.
- W2897633168 hasConcept C192562407 @default.
- W2897633168 hasConcept C24939127 @default.
- W2897633168 hasConcept C2778769901 @default.
- W2897633168 hasConcept C2780586759 @default.
- W2897633168 hasConcept C2781345722 @default.
- W2897633168 hasConcept C31903555 @default.
- W2897633168 hasConcept C41008148 @default.