Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897637621> ?p ?o ?g. }
- W2897637621 endingPage "65487" @default.
- W2897637621 startingPage "65474" @default.
- W2897637621 abstract "Accurate transient stability assessment (TSA) is a fundamental requirement for ensuring secure and stable operation of power systems. Tremendous efforts have been made to apply artificial intelligence approaches for TSA with phasor measurement unit data. However, many previous approaches may be failed to provide favorable accuracy due to the shallow architectures and error-prone hand-crafting features. This paper proposed a model for TSA, which is termed multi-branch stacked denoising autoencoder (MSDAE). This model is a unified framework integrating multiple stacked denoising autoencoders (SDAEs), one fusion layer, and one logistic regression (LR) layer. Initially, the SDAEs at the bottom of MSDAE extract features from multiple kinds of measurements respectively. Then, the extracted features are encoded into unified fusion features by the fusion layer. Finally, the LR layer performs TSA by using the fusion features. The depth of the architecture contributes to the remarkable ability for feature learning, while the width of the architecture (i.e., the multiple branches) enables MSDAE to deal with different kinds of measurements by a reasonable mechanism. In this way, MSDAE achieves feature extraction and classification intrinsically and simultaneously, namely, achieves TSA in an end-to-end manner. The results of experiments on IEEE 50-machine system demonstrate the superiority of the proposed model over the prior methods." @default.
- W2897637621 created "2018-10-26" @default.
- W2897637621 creator A5011095703 @default.
- W2897637621 creator A5011821362 @default.
- W2897637621 creator A5035317975 @default.
- W2897637621 creator A5039363991 @default.
- W2897637621 creator A5045791095 @default.
- W2897637621 creator A5076167872 @default.
- W2897637621 date "2018-01-01" @default.
- W2897637621 modified "2023-09-29" @default.
- W2897637621 title "A Deep End-to-End Model for Transient Stability Assessment With PMU Data" @default.
- W2897637621 cites W1509227760 @default.
- W2897637621 cites W1521492382 @default.
- W2897637621 cites W1597181898 @default.
- W2897637621 cites W1966534617 @default.
- W2897637621 cites W1978508564 @default.
- W2897637621 cites W1979170328 @default.
- W2897637621 cites W1992706604 @default.
- W2897637621 cites W2004362043 @default.
- W2897637621 cites W2004675218 @default.
- W2897637621 cites W2014506068 @default.
- W2897637621 cites W2026430219 @default.
- W2897637621 cites W2027069555 @default.
- W2897637621 cites W2036109700 @default.
- W2897637621 cites W2040411595 @default.
- W2897637621 cites W2051322388 @default.
- W2897637621 cites W2054886133 @default.
- W2897637621 cites W2063395578 @default.
- W2897637621 cites W2082861876 @default.
- W2897637621 cites W2085846403 @default.
- W2897637621 cites W2090424610 @default.
- W2897637621 cites W2095703091 @default.
- W2897637621 cites W2100205552 @default.
- W2897637621 cites W2100495367 @default.
- W2897637621 cites W2102668823 @default.
- W2897637621 cites W2125843442 @default.
- W2897637621 cites W2139298825 @default.
- W2897637621 cites W2144287333 @default.
- W2897637621 cites W2149111570 @default.
- W2897637621 cites W2150738367 @default.
- W2897637621 cites W2162849508 @default.
- W2897637621 cites W2169662713 @default.
- W2897637621 cites W2194187530 @default.
- W2897637621 cites W2332213682 @default.
- W2897637621 cites W2341771166 @default.
- W2897637621 cites W2342880667 @default.
- W2897637621 cites W2472903488 @default.
- W2897637621 cites W2509045969 @default.
- W2897637621 cites W2540406226 @default.
- W2897637621 cites W2553245249 @default.
- W2897637621 cites W2566193383 @default.
- W2897637621 cites W2586937979 @default.
- W2897637621 cites W2593547385 @default.
- W2897637621 cites W2597229673 @default.
- W2897637621 cites W2619304139 @default.
- W2897637621 cites W2737654582 @default.
- W2897637621 cites W2753100145 @default.
- W2897637621 cites W2761148314 @default.
- W2897637621 cites W4231109964 @default.
- W2897637621 doi "https://doi.org/10.1109/access.2018.2872796" @default.
- W2897637621 hasPublicationYear "2018" @default.
- W2897637621 type Work @default.
- W2897637621 sameAs 2897637621 @default.
- W2897637621 citedByCount "31" @default.
- W2897637621 countsByYear W28976376212019 @default.
- W2897637621 countsByYear W28976376212020 @default.
- W2897637621 countsByYear W28976376212021 @default.
- W2897637621 countsByYear W28976376212022 @default.
- W2897637621 countsByYear W28976376212023 @default.
- W2897637621 crossrefType "journal-article" @default.
- W2897637621 hasAuthorship W2897637621A5011095703 @default.
- W2897637621 hasAuthorship W2897637621A5011821362 @default.
- W2897637621 hasAuthorship W2897637621A5035317975 @default.
- W2897637621 hasAuthorship W2897637621A5039363991 @default.
- W2897637621 hasAuthorship W2897637621A5045791095 @default.
- W2897637621 hasAuthorship W2897637621A5076167872 @default.
- W2897637621 hasBestOaLocation W28976376211 @default.
- W2897637621 hasConcept C101738243 @default.
- W2897637621 hasConcept C103038307 @default.
- W2897637621 hasConcept C108583219 @default.
- W2897637621 hasConcept C111919701 @default.
- W2897637621 hasConcept C112972136 @default.
- W2897637621 hasConcept C119857082 @default.
- W2897637621 hasConcept C121332964 @default.
- W2897637621 hasConcept C124101348 @default.
- W2897637621 hasConcept C138885662 @default.
- W2897637621 hasConcept C153180895 @default.
- W2897637621 hasConcept C154945302 @default.
- W2897637621 hasConcept C158525013 @default.
- W2897637621 hasConcept C163258240 @default.
- W2897637621 hasConcept C173414695 @default.
- W2897637621 hasConcept C176605952 @default.
- W2897637621 hasConcept C178790620 @default.
- W2897637621 hasConcept C185592680 @default.
- W2897637621 hasConcept C2776401178 @default.
- W2897637621 hasConcept C2778229166 @default.
- W2897637621 hasConcept C2779227376 @default.
- W2897637621 hasConcept C2780799671 @default.