Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897645502> ?p ?o ?g. }
- W2897645502 endingPage "18336" @default.
- W2897645502 startingPage "18328" @default.
- W2897645502 abstract "2-Hydroxy-oleic acid (2OHOA) is a potent anticancer drug that induces cancer cell cycle arrest and apoptosis. Previous studies have suggested that 2OHOA's anticancer effect is mediated by SMS activation in cancer cells, including A549 and U118 cells. To confirm this phenomenon, in this study, we treated both A549 and U118 cells with 2OHOA and measured SMS activity. To our surprise, we found neither 2OHOA-mediated SMS activation nor sphingomyelin accumulation in the cells. However, we noted that 2OHOA significantly reduces phosphatidylcholine in these cells. We also did not observe 2OHOA-mediated SMS activation in mouse tissue homogenates. Importantly, 2OHOA inhibited rather than activated recombinant SMS1 (rSMS1) and rSMS2 in a dose-dependent fashion. Intra-gastric treatment of C57BL/6J mice with 2OHOA for 10 days had no effects on liver and small intestine SMS activities and plasma sphingomyelin levels. The treatment inhibited lysophosphatidylcholine acyltransferase (LPCAT) activity, consistent with the aforementioned reduction in plasma phosphatidylcholine. Because total cellular phosphatidylcholine is used as a predictive biomarker for monitoring tumor responses, the previously reported 2OHOA-mediated cancer suppression could be related to this phosphatidylcholine reduction, which may influence cell membrane structure and properties. We conclude that 2OHOA is not a SMS activator and that its anticancer property may be related to an effect on phosphatidylcholine metabolism. 2-Hydroxy-oleic acid (2OHOA) is a potent anticancer drug that induces cancer cell cycle arrest and apoptosis. Previous studies have suggested that 2OHOA's anticancer effect is mediated by SMS activation in cancer cells, including A549 and U118 cells. To confirm this phenomenon, in this study, we treated both A549 and U118 cells with 2OHOA and measured SMS activity. To our surprise, we found neither 2OHOA-mediated SMS activation nor sphingomyelin accumulation in the cells. However, we noted that 2OHOA significantly reduces phosphatidylcholine in these cells. We also did not observe 2OHOA-mediated SMS activation in mouse tissue homogenates. Importantly, 2OHOA inhibited rather than activated recombinant SMS1 (rSMS1) and rSMS2 in a dose-dependent fashion. Intra-gastric treatment of C57BL/6J mice with 2OHOA for 10 days had no effects on liver and small intestine SMS activities and plasma sphingomyelin levels. The treatment inhibited lysophosphatidylcholine acyltransferase (LPCAT) activity, consistent with the aforementioned reduction in plasma phosphatidylcholine. Because total cellular phosphatidylcholine is used as a predictive biomarker for monitoring tumor responses, the previously reported 2OHOA-mediated cancer suppression could be related to this phosphatidylcholine reduction, which may influence cell membrane structure and properties. We conclude that 2OHOA is not a SMS activator and that its anticancer property may be related to an effect on phosphatidylcholine metabolism. Correction: 2-Hydroxy-oleic acid does not activate sphingomyelin synthase activity.Journal of Biological ChemistryVol. 294Issue 22PreviewThere was an error in the grant footnote. The National Institutes of Health grant number was incorrect. The correct grant number is NIH R56 HL121409. Full-Text PDF Open Access 2-Hydroxy-oleic acid (2OHOA) 3The abbreviations used are: 2OHOA2-hydroxy-oleic acidPCphosphatidylcholineSMsphingomyelinSMSsphingomyelin synthaserSMS1 and rSMS2recombinant SMS1 and SMS2, respectivelyLPCATlysophosphatidylcholine acyltransferaseNBD12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl))MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidePMSFphenylmethylsulfonyl fluorideTLCthin-layer chromatographyESIelectrospray ionization. is a potent anticancer drug that induces cancer cell cycle arrest (1Martínez J. Gutiérrez A. Casas J. Lladó V. López-Bellan A. Besalduch J. Dopazo A. Escribá P.V. The repression of E2F-1 is critical for the activity of Minerval against cancer.J. Pharmacol. Exp. Ther. 2005; 315 (16027227): 466-47410.1124/jpet.105.088716Crossref PubMed Scopus (36) Google Scholar), differentiation (2Terés S. Lladó V. Higuera M. Barceló-Coblijn G. Martin M.L. Noguera-Salvà M.A. Marcilla-Etxenike A. García-Verdugo J.M. Soriano-Navarro M. Saus C. Gómez-Pinedo U. Busquets X. Escribá P.V. 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc.Natl. Acad. Sci. U.S.A. 2012; 109 (22586083): 8489-849410.1073/pnas.1118349109Crossref PubMed Scopus (82) Google Scholar), and death (3Llado V. Gutierrez A. Martínez J. Casas J. Terés S. Higuera M. Galmés A. Saus C. Besalduch J. Busquets X. Escribá P.V. Minerval induces apoptosis in Jurkat and other cancer cells.J. Cell. Mol. Med. 2010; 14 (19413889): 659-670PubMed Google Scholar, 4Lladó V. Terés S. Higuera M. Alvarez R. Noguera-Salva M.A. Halver J.E. Escribá P.V. Busquets X. Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19666584): 13754-1375810.1073/pnas.0907300106Crossref PubMed Scopus (35) Google Scholar5Martínez J. Vögler O. Casas J. Barceló F. Alemany R. Prades J. Nagy T. Baamonde C. Kasprzyk P.G. Terés S. Saus C. Escribá P.V. Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval.Mol. Pharmacol. 2005; 67 (15531732): 531-540Crossref PubMed Scopus (70) Google Scholar). The European Medicines Agency has designated 2OHOA as an orphan drug for the treatment of glioma. 2-hydroxy-oleic acid phosphatidylcholine sphingomyelin sphingomyelin synthase recombinant SMS1 and SMS2, respectively lysophosphatidylcholine acyltransferase 12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide phenylmethylsulfonyl fluoride thin-layer chromatography electrospray ionization. However, the underlying mechanisms leading to cancer cell death remain largely unknown, although it has been reported that the effect was mediated by activation of sphingomyelin synthase (SMS) in cancer cells and accumulation of cell sphingomyelin levels (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). The biochemical synthesis of SM occurs through the action of serine palmitoyltransferase, 3-ketosphinganine reductase, ceramide synthase, dihydroceramide desaturase, and SMS (7Merrill Jr., A.H. Jones D.D. An update of the enzymology and regulation of sphingomyelin metabolism.Biochim. Biophys. Acta. 1990; 1044 (2187537): 1-1210.1016/0005-2760(90)90211-FCrossref PubMed Scopus (394) Google Scholar). SMS catalyzes the conversion of ceramide to sphingomyelin. The SMS gene family consists of three members, SMS1, SMS2, and SMS-related protein (SMSr). SMS1 is found in the trans-Golgi complex, whereas SMS2 is predominantly found in the plasma membranes (8Huitema K. van den Dikkenberg J. Brouwers J.F. Holthuis J.C. Identification of a family of animal sphingomyelin synthases.EMBO J. 2004; 23 (14685263): 33-4410.1038/sj.emboj.7600034Crossref PubMed Scopus (469) Google Scholar, 9Yamaoka S. Miyaji M. Kitano T. Umehara H. Okazaki T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells.J. Biol. Chem. 2004; 279 (14976195): 18688-1869310.1074/jbc.M401205200Abstract Full Text Full Text PDF PubMed Scopus (192) Google Scholar). SMSr, the third member of the gene family, has no SMS activity but catalyzes the synthesis of ceramide-phosphoethanolamine in the ER lumen (8Huitema K. van den Dikkenberg J. Brouwers J.F. Holthuis J.C. Identification of a family of animal sphingomyelin synthases.EMBO J. 2004; 23 (14685263): 33-4410.1038/sj.emboj.7600034Crossref PubMed Scopus (469) Google Scholar, 10Vacaru A.M. Tafesse F.G. Ternes P. Kondylis V. Hermansson M. Brouwers J.F. Somerharju P. Rabouille C. Holthuis J.C. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER.J. Cell Biol. 2009; 185 (19506037): 1013-102710.1083/jcb.200903152Crossref PubMed Scopus (121) Google Scholar). We and another research group reported that systemic SMS1 KO exhibited moderate neonatal lethality (11Yano M. Watanabe K. Yamamoto T. Ikeda K. Senokuchi T. Lu M. Kadomatsu T. Tsukano H. Ikawa M. Okabe M. Yamaoka S. Okazaki T. Umehara H. Gotoh T. Song W.J. Node K. Taguchi R. Yamagata K. Oike Y. Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice.J. Biol. Chem. 2011; 286 (21115496): 3992-400210.1074/jbc.M110.179176Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, 12Li Z. Fan Y. Liu J. Li Y. Huan C. Bui H.H. Kuo M.S. Park T.S. Cao G. Jiang X.C. Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice.Arterioscler. Thromb. Vasc. Biol. 2012; 32 (22580896): 1577-158410.1161/ATVBAHA.112.251538Crossref PubMed Scopus (90) Google Scholar) (i.e. 25% of homozygotes die during the first 3 weeks; the remainder can grow to adulthood). On the other hand, SMS2 KO mice display no obvious abnormalities and grow to adulthood (13Liu J. Zhang H. Li Z. Hailemariam T.K. Chakraborty M. Jiang K. Qiu D. Bui H.H. Peake D.A. Kuo M.S. Wadgaonkar R. Cao G. Jiang X.C. Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice.Arterioscler. Thromb. Vasc. Biol. 2009; 29 (19286635): 850-85610.1161/ATVBAHA.109.185223Crossref PubMed Scopus (75) Google Scholar). We and others have suggested that SMS2 might be a therapeutic target for metabolic diseases, including type 2 diabetes, fatty liver, and atherosclerosis (14Mitsutake S. Zama K. Yokota H. Yoshida T. Tanaka M. Mitsui M. Ikawa M. Okabe M. Tanaka Y. Yamashita T. Takemoto H. Okazaki T. Watanabe K. Igarashi Y. Dynamic modification of sphingomyelin in lipid microdomains controls development of obesity, fatty liver, and type 2 diabetes.J. Biol. Chem. 2011; 286 (21669879): 28544-2855510.1074/jbc.M111.255646Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar15Sugimoto M. Shimizu Y. Zhao S. Ukon N. Nishijima K. Wakabayashi M. Yoshioka T. Higashino K. Numata Y. Okuda T. Tamaki N. Hanamatsu H. Igarashi Y. Kuge Y. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.Biochim. Biophys. Acta. 2016; 1861 (27151272): 688-70210.1016/j.bbalip.2016.04.019Crossref PubMed Scopus (28) Google Scholar, 16Sakamoto H. Yoshida T. Sanaki T. Shigaki S. Morita H. Oyama M. Mitsui M. Tanaka Y. Nakano T. Mitsutake S. Igarashi Y. Takemoto H. Possible roles of long-chain sphingomyelines and sphingomyelin synthase 2 in mouse macrophage inflammatory response.Biochem. Biophys. Res. Commun. 2017; 482 (27836537): 202-20710.1016/j.bbrc.2016.11.041Crossref PubMed Scopus (22) Google Scholar, 17Fan Y. Shi F. Liu J. Dong J. Bui H.H. Peake D.A. Kuo M.S. Cao G. Jiang X.C. Selective reduction in the sphingomyelin content of atherogenic lipoproteins inhibits their retention in murine aortas and the subsequent development of atherosclerosis.Arterioscler. Thromb. Vasc. Biol. 2010; 30 (20814016): 2114-212010.1161/ATVBAHA.110.213363Crossref PubMed Scopus (49) Google Scholar, 18Li Z. Zhang H. Liu J. Liang C.P. Li Y. Li Y. Teitelman G. Beyer T. Bui H.H. Peake D.A. Zhang Y. Sanders P.E. Kuo M.S. Park T.S. Cao G. Jiang X.C. Reducing plasma membrane sphingomyelin increases insulin sensitivity.Mol. Cell. Biol. 2011; 31 (21844222): 4205-421810.1128/MCB.05893-11Crossref PubMed Scopus (133) Google Scholar, 19Lou B. Dong J. Li Y. Ding T. Bi T. Li Y. Deng X. Ye D. Jiang X.C. Pharmacologic inhibition of sphingomyelin synthase (SMS) activity reduces apolipoprotein-B secretion from hepatocytes and attenuates endotoxin-mediated macrophage inflammation.PLoS One. 2014; 9 (25032960)e10264110.1371/journal.pone.0102641Crossref PubMed Scopus (21) Google Scholar20Li Y. Dong J. Ding T. Kuo M.S. Cao G. Jiang X.C. Li Z. Sphingomyelin synthase 2 activity and liver steatosis: an effect of ceramide-mediated peroxisome proliferator-activated receptor γ2 suppression.Arterioscler. Thromb. Vasc. Biol. 2013; 33 (23640498): 1513-152010.1161/ATVBAHA.113.301498Crossref PubMed Scopus (49) Google Scholar). However, the potential effect of 2OHOA on SMS activation (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar) could compromise the effort of SMS2 inhibitor exploration (21Gándola Y.B. Pérez S.E. Irene P.E. Sotelo A.I. Miquet J.G. Corradi G.R. Carlucci A.M. Gonzalez L. Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells.Biomed. Res. Int. 2014; 2014 (24772432)687037Crossref PubMed Scopus (28) Google Scholar). In this study, we re-evaluated the effect of 2OHOA on SMS activity, using the same cells reported by previous studies (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar), and we could not repeat what had been reported. We further explored a potential 2OHOA-mediated anti-cancer mechanism. We re-evaluated the effect of 2OHOA on SMS. To our surprise, we did not find the same effect of 2OHOA reported before (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). We first incubated 2OHOA (200 μm) with mouse liver homogenate and then measured SMS activity: generation of NBD-SM from NBD-ceramide. We not only did not observe the activation, but also observed some inhibition, although it did not reach statistical significance (Fig. 1, A and B). Moreover, we performed the same analysis on homogenates from either HEK293 cells or HeLa cells, and we observed a significant reduction instead of induction on SMS activity in a dose-dependent fashion (Fig. 1, C and D). It has been reported that the treatment of 2OHOA (200 μm) on U118 and A549, two cancer cell lines, could stimulate SMS activity in both cells, leading to cell death (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). We next re-evaluated this assay. We first determined the cell survival rate after 2OHOA treatment in different doses. Indeed, 200 μm 2OHOA could significantly reduce the survival rate of U118 cells (Fig. 2A) and A549 cells (Fig. 2B). We treated U118 and A549 cells with 2OHOA (200 μm) and then used the cell homogenates for SMS activity analysis. Again, we did not find significant changes of SMS activity in either cell line (Fig. 2, C and D). Further, we treated mouse primary macrophages with 200 μm 2OHOA, and we again did not find any significant changes in SMS activity (Fig. 2E). These results indicate that 2OHOA cannot stimulate SMS activity in our tested cancer cells and macrophages. To directly test the effect of 2OHOA, we transfected insect cells with SMS1-Strep tag and SMS2-Strep tag and purified both proteins, which have high SMS activity (Fig. 3A). We then incubated the purified proteins with different concentration of 2OHOA for 2 h, and we found that 2OHOA has a dose-dependent inhibition of SMS1 (Fig. 3, B and D) and SMS2 (Fig. 3, C and E) instead of activation. 2OHOA is an analog of oleic acid that can be used as a substrate for LPCAT activity. It seems to be reasonable that 2OHOA could interfere with LPCAT activity by competing with acyl-CoA. Indeed, when we utilized tissue homogenates from mouse liver, lung, brain, and testis to test LPCAT activity, using oleoyl-CoA, we found that 2OHOA inhibits LPCAT activity in a dose-dependent manner (Fig. 4, A–D). We then treated both mouse liver and small intestine homogenates with 200 μm 2OHOA and oleoyl-CoA, and we found a dramatic reduction of LPCAT activity (Fig. 4E). However, when we used arachidonyl-CoA as a substrate, the liver inhibition did not reach to statistical significance (Fig. 4F), indicating that 2OHOA may have minimal effect on LPCAT3, one of the four isoforms of LPCAT. Arachidonyl-CoA is the optimal substrate for LPCAT3 (22Zhao Y. Chen Y.Q. Bonacci T.M. Bredt D.S. Li S. Bensch W.R. Moller D.E. Kowala M. Konrad R.J. Cao G. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase.J. Biol. Chem. 2008; 283 (18195019): 8258-826510.1074/jbc.M710422200Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar). Based on the structure of 2OHOA, most likely, it could compete with the substrate of LPCAT (i.e. oleoyl-CoA and some other acyl-CoA). Potentially, any biochemistry reaction with oleoyl-CoA as a substrate could be influenced by 2OHOA treatment. Thus, it is not likely that 2OHOA could influence mRNA and protein levels of SMS1, SMS2, and LPCAT. It has been reported that the treatment of 2OHOA (200 μm) on U118 and A549 cells caused SM accumulation owing to SMS activation (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). To re-evaluate this, we extracted the lipids from A549 cells after 2OHOA (200 μm) treatment and measured PC and SM subspecies using LC/MS/MS. We found that almost all tested PCs were significantly reduced (Table 1). However, no tested SMs had any significant changes (Table 2), except 18:0, which is a minor SM (less than 3% of all tested SM). These results again indicated that 2OHOA is not a SMS activator.Table 1Changes in A549 cell PC species after 2OHOA treatmentPCControl2OHOAp value16:0/16:015.31 ± 1.1815.87 ± 0.98NS16:0/18:166.29 ± 4.5853.84 ± 4.07<0.0218:0/20:41.41 ± 0.020.89 ± 0.05<0.00118:1/16:047.14 ± 4.1439.07 ± 3.09<0.0518:1/18:04.93 ± 0.384.20 ± 0.22<0.05 Open table in a new tab Table 2Changes in A549 cell SM species after 2OHOA treatmentSMControl2OHOAp value16:02.62 ± 0.262.75 ± 0.43NS18:00.17 ± 0.020.21 ± 0.02<0.0518:10.04 ± 0.010.04 ± 0.00NS24:00.89 ± 0.100.95 ± 0.08NS24:12.67 ± 0.252.51 ± 0.07NS Open table in a new tab To further investigate the effect of 2OHOA on cell plasma membrane, we studied lysenin-mediated cell lysis. Lysenin is a SM-specific cytotoxin. Lysenin recognizes plasma membrane SM only when it forms aggregates or microdomains and then causes cell lysis (23Ishitsuka R. Yamaji-Hasegawa A. Makino A. Hirabayashi Y. Kobayashi T. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes.Biophys. J. 2004; 86 (14695271): 296-30710.1016/S0006-3495(04)74105-3Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar). If 2OHOA could indeed induce SM accumulation on the plasma membrane, as suggested previously (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar), then the lysenin should cause more cell death. However, we did not observe any changes in lysenin-mediated A549 cell mortality with or without 2OHOA treatment (Fig. 5), suggesting no SM increasing on the plasma membrane. These results again indicated that 2OHOA is not a SMS activator. We next investigated in vivo effects of 2OHOA. We treated C57BL/6 mice with 2OHOA (600 mg/kg, intragastrically) once daily for 7 days. We found that the treatment had no effect on liver and small intestine SMS activity (Fig. 6, A and B), but significantly reduced liver and small intestine LPCAT activity, when oleoyl-CoA was used (Fig. 6, C and D). Moreover, 2OHOA significantly decreased plasma PC, cholesterol, and triglyceride levels (Fig. 7, A, C, and D). We also measured plasma subspecies of PC, using LC/MS/MS, and found that almost all PCs were significantly reduced (Table 3). Importantly, plasma SM levels were reduced instead of increased (Fig. 7B), although it did not reach statistical significance. We also measured plasma subspecies of SM and found that SM16:0 was significantly reduced, whereas two other major species, SM 24:0 and SM24:1, were reduced, but did not reach to statistical significance (Table 4). We also observed that two minor SMs (SM18:0 and SM18:1) were significantly increased, but they only compose about 3% of total plasma SM levels. These results indicate that 2OHOA has a significant effect on plasma PC but not SM, suggesting, again, that 2OHOA is not a SMS activator.Figure 7The effect of 2OHOA on plasma lipid levels. All plasma lipids were measured by colorimetric methods. A, phosphatidylcholine; B, sphingomyelin; C, total cholesterol; D, triglyceride. Values are mean ± S.D. (error bars), n = 5. *, p < 0.01.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Table 3Changes in plasma PC species after 2OHOA treatmentPCControl2OHOAp valueμg/mlμg/ml34:1262 ± 93134 ± 13<0.0116:0/18:2895 ± 205387 ± 73<0.0136:192 ± 2449 ± 18<0.0118:1/18:1549 ± 78265 ± 105<0.0136:3225 ± 2886 ± 5<0.00136:4260 ± 6387 ± 9<0.0118:0/20:4123 ± 3451 ± 8<0.0138:4123 ± 3451 ± 8<0.0138:595 ± 2838 ± 6<0.0116:0/22:6292 ± 89174 ± 28<0.0540:35 ± 22 ± 1NS40:681 ± 3357 ± 3NS Open table in a new tab Table 4Changes in plasma SM species after 2OHOA treatmentSMsControl2OHOAp valueμg/mlμg/ml16:08.1 ± 0.86.6 ± 0.2<0.0516:11.1 ± 0.30.8 ± 0.1<0.0518:00.6 ± 0.11.2 ± 0.3<0.0518:10.5 ± 0.10.9 ± 0.3<0.0518:20.1 ± 0.00.2 ± 0.1<0.0520:00.3 ± 0.10.5 ± 0.2NS22:02.6 ± 1.52.0 ± 0.6NS24:03.8 ± 1.32.7 ± 0.4NS24:117.1 ± 3.715.0 ± 3.2NS Open table in a new tab We have reported that inhibition of SMS activity can reduce atherogenic lipoprotein production and attenuate endotoxin-mediated macrophage inflammation (12Li Z. Fan Y. Liu J. Li Y. Huan C. Bui H.H. Kuo M.S. Park T.S. Cao G. Jiang X.C. Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice.Arterioscler. Thromb. Vasc. Biol. 2012; 32 (22580896): 1577-158410.1161/ATVBAHA.112.251538Crossref PubMed Scopus (90) Google Scholar, 24Liu J. Huan C. Chakraborty M. Zhang H. Lu D. Kuo M.S. Cao G. Jiang X.C. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice.Circ. Res. 2009; 105 (19590047): 295-30310.1161/CIRCRESAHA.109.194613Crossref PubMed Scopus (117) Google Scholar, 25Hailemariam T.K. Huan C. Liu J. Li Z. Roman C. Kalbfeisch M. Bui H.H. Peake D.A. Kuo M.S. Cao G. Wadgaonkar R. Jiang X.C. Sphingomyelin synthase 2 deficiency attenuates NFκB activation.Arterioscler. Thromb. Vasc. Biol. 2008; 28 (18566297): 1519-152610.1161/ATVBAHA.108.168682Crossref PubMed Scopus (118) Google Scholar). Likewise, SMS inhibition could be a new therapeutic target for the treatment of atherosclerosis. However, based on existing reports, inhibition of SMS seems to result in tumorigenesis, because 2OHOA, a potent anticancer drug, could activate SMS in cancer cells (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). We thus re-evaluated the effect of 2OHOA on SMS. In this study, we found that 2OHOA treatment 1) has no effect on SMS activation in tested cancer cells, normal cells, and mouse tissue homogenates and has no effect of SM accumulation in cancer cells; 2) inhibits instead of activates rSMS1 and rSMS2 activity in a dose-dependent manner; and 3) can inhibit LPCAT but not LPCAT3 activity and significantly reduces phosphatidylcholine levels. Although we cannot explain the discrepancy between our results and a previous report, in fact, we repeated the experiments that were reported (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). We treated U118 and A459 cancer cell lines with 2OHOA, and we found significant changes in neither SMS activity (Fig. 2, B and C) nor cellular SM levels (Table 2) and plasma membrane SM levels (Fig. 5), indicating that the anti-cancer property of 2OHOA should not be related with cancer cell SMS activation. However, both our study and the previous study show that 2OHOA treatment can significantly reduce cellular PC levels (Table 1) (6Barceló-Coblijn G. Martin M.L. de Almeida R.F. Noguera-Salvà M.A. Marcilla-Etxenike A. Guardiola-Serrano F. Lüth A. Kleuser B. Halver J.E. Escribá P.V. Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc.Natl. Acad. Sci. U.S.A. 2011; 108 (22106271): 19569-1957410.1073/pnas.1115484108Crossref PubMed Scopus (124) Google Scholar). Tumor xenografts are a popular model for the study of the action of new anti-tumor drugs. We also noticed that a previous report, which analyzed changes in the lipidome of xenografts after treatment with 2OHOA, showed the induction of two SMs (34:1 and 42:2). Neither the rest of the major SMs nor SMS activity levels were indicated in the tumor xenografts (26Fernández R. Garate J. Lage S. Terés S. Higuera M. Bestard-Escalas J. Martin M.L. López D.H. Guardiola-Serrano F. Escribá P.V. Barceló-Coblijn G. Fernández J.A. Optimized protocol to analyze changes in the lipidome of xenografts after treatment with 2-hydroxyoleic acid.Anal. Chem. 2016; 88 (26607740): 1022-102910.1021/acs.analchem.5b03978Crossref PubMed Scopus (7) Google Scholar). Interestingly, 2OHOA treatment significantly reduced almost all major PCs (16;0/18:1, 16:0/16:0, 16:0/16:1, 16:0/18:2, 18:0/18:2, and 16:0/20:4), although the treatment had an opposite effect on some minor PCs (less than 5% of total PCs) (26Fernández R. Garate J. Lage S. Terés S. Higuera M. Bestard-Escalas J. Martin M.L. López D.H. Guardiola-Serrano F. Escribá P.V. Barceló-Coblijn G. Fernández J.A. Optimized protocol to analyze changes in the lipidome of xenografts after treatment with 2-hydroxyoleic acid.Anal. Chem. 2016; 88 (26607740): 1022-102910.1021/acs.analchem.5b03978Crossref PubMed Scopus (7) Google Scholar). We did not repeat the xenografts; however, we treated C57BL/6 mice with same dose of 2OHOA (600 mg·kg−1) for 10 days, and we found a significant reduction of plasma PCs (Fig. 7A) but not SM (Fig. 7B), which reflects a steady state of PC and SM metabolism (biosynthesis and catabolism). PCs are first synthesized from glycerol 3-phosphate in the de novo biosynthetic pathway, originally described by Kennedy and Weiss in 1956 (Kennedy pathway) (27Kennedy E.P. Weiss S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides.J. Biol. Chem. 1956; 222 (13366993): 193-214Abstract Full Text PDF PubMed Google Scholar), and undergo maturation in the remodeling pathway, as reported by Lands in 1958 (Lands’ cycle) (28Lands W.E. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis.J. Biol. Chem. 1958; 231 (13539023): 883-888Abstract Full Text PDF PubMed Google Scholar). The PC remodeling consists of two steps: the deacylation step, which is catalyzed by calcium-independent phospholipase A2 (29Ma Z. Wang X. Nowatzke W. Ramanadham S. Turk J. Human pancreatic islets express mRNA species encoding tw" @default.
- W2897645502 created "2018-10-26" @default.
- W2897645502 creator A5011239210 @default.
- W2897645502 creator A5020819058 @default.
- W2897645502 creator A5033257724 @default.
- W2897645502 creator A5033759584 @default.
- W2897645502 creator A5051266638 @default.
- W2897645502 creator A5057049239 @default.
- W2897645502 creator A5065582421 @default.
- W2897645502 creator A5068568705 @default.
- W2897645502 creator A5071326678 @default.
- W2897645502 creator A5072905780 @default.
- W2897645502 creator A5081161833 @default.
- W2897645502 creator A5084795666 @default.
- W2897645502 creator A5085028455 @default.
- W2897645502 creator A5085416386 @default.
- W2897645502 date "2018-11-01" @default.
- W2897645502 modified "2023-10-17" @default.
- W2897645502 title "2-Hydroxy-oleic acid does not activate sphingomyelin synthase activity" @default.
- W2897645502 cites W1538386443 @default.
- W2897645502 cites W1575864823 @default.
- W2897645502 cites W1973934237 @default.
- W2897645502 cites W1974083452 @default.
- W2897645502 cites W1977911448 @default.
- W2897645502 cites W1979291608 @default.
- W2897645502 cites W1982268890 @default.
- W2897645502 cites W1989366241 @default.
- W2897645502 cites W1996173170 @default.
- W2897645502 cites W2000823512 @default.
- W2897645502 cites W2013076235 @default.
- W2897645502 cites W2028749089 @default.
- W2897645502 cites W2030061236 @default.
- W2897645502 cites W2031401392 @default.
- W2897645502 cites W2037559271 @default.
- W2897645502 cites W2042623389 @default.
- W2897645502 cites W2042815880 @default.
- W2897645502 cites W2044807782 @default.
- W2897645502 cites W2045753263 @default.
- W2897645502 cites W2047821043 @default.
- W2897645502 cites W2066336750 @default.
- W2897645502 cites W2080828541 @default.
- W2897645502 cites W2084918839 @default.
- W2897645502 cites W2085012596 @default.
- W2897645502 cites W2091196589 @default.
- W2897645502 cites W2095777272 @default.
- W2897645502 cites W2116903951 @default.
- W2897645502 cites W2118381633 @default.
- W2897645502 cites W2120739582 @default.
- W2897645502 cites W2135283688 @default.
- W2897645502 cites W2142750712 @default.
- W2897645502 cites W2143739573 @default.
- W2897645502 cites W2148189709 @default.
- W2897645502 cites W2150339227 @default.
- W2897645502 cites W2150961941 @default.
- W2897645502 cites W2164865663 @default.
- W2897645502 cites W2170923201 @default.
- W2897645502 cites W2172741822 @default.
- W2897645502 cites W2346461556 @default.
- W2897645502 cites W2527082732 @default.
- W2897645502 cites W2552943260 @default.
- W2897645502 cites W2567989936 @default.
- W2897645502 doi "https://doi.org/10.1074/jbc.ra118.005904" @default.
- W2897645502 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6254338" @default.
- W2897645502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30305392" @default.
- W2897645502 hasPublicationYear "2018" @default.
- W2897645502 type Work @default.
- W2897645502 sameAs 2897645502 @default.
- W2897645502 citedByCount "10" @default.
- W2897645502 countsByYear W28976455022019 @default.
- W2897645502 countsByYear W28976455022020 @default.
- W2897645502 countsByYear W28976455022021 @default.
- W2897645502 countsByYear W28976455022022 @default.
- W2897645502 countsByYear W28976455022023 @default.
- W2897645502 crossrefType "journal-article" @default.
- W2897645502 hasAuthorship W2897645502A5011239210 @default.
- W2897645502 hasAuthorship W2897645502A5020819058 @default.
- W2897645502 hasAuthorship W2897645502A5033257724 @default.
- W2897645502 hasAuthorship W2897645502A5033759584 @default.
- W2897645502 hasAuthorship W2897645502A5051266638 @default.
- W2897645502 hasAuthorship W2897645502A5057049239 @default.
- W2897645502 hasAuthorship W2897645502A5065582421 @default.
- W2897645502 hasAuthorship W2897645502A5068568705 @default.
- W2897645502 hasAuthorship W2897645502A5071326678 @default.
- W2897645502 hasAuthorship W2897645502A5072905780 @default.
- W2897645502 hasAuthorship W2897645502A5081161833 @default.
- W2897645502 hasAuthorship W2897645502A5084795666 @default.
- W2897645502 hasAuthorship W2897645502A5085028455 @default.
- W2897645502 hasAuthorship W2897645502A5085416386 @default.
- W2897645502 hasBestOaLocation W28976455021 @default.
- W2897645502 hasConcept C112243037 @default.
- W2897645502 hasConcept C181199279 @default.
- W2897645502 hasConcept C185592680 @default.
- W2897645502 hasConcept C2778163477 @default.
- W2897645502 hasConcept C2781403372 @default.
- W2897645502 hasConcept C55493867 @default.
- W2897645502 hasConcept C61322309 @default.
- W2897645502 hasConceptScore W2897645502C112243037 @default.
- W2897645502 hasConceptScore W2897645502C181199279 @default.