Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897655170> ?p ?o ?g. }
- W2897655170 endingPage "64816" @default.
- W2897655170 startingPage "64801" @default.
- W2897655170 abstract "We present a method to detect anomalies in time series of flow interaction patterns. There are many existing methods for anomaly detection in network traffic, such as the number of packets. However, there is no established method to detect anomalies in time series of flow interaction patterns that can be represented as complex network. First, based on the proposed multivariate flow similarity method on temporal locality, a complex network model (MFS-TL) is constructed to describe the interactive behaviors of traffic flows. After analyzing the relationships between MFS-TL characteristics, temporal locality window, and multivariate flow similarity critical threshold, an approach for parameters determination was established. Observed the evolution of MFS-TL characteristics, three non-deterministic correlations were defined for network states (i.e., normal or abnormal). Furthermore, intuitionistic fuzzy set (IFS) is introduced to quantify three non-deterministic correlations, and an anomaly detection method is put forward for single characteristic sequence. In order to build an objective IFS, we design a Gaussian distribution-based membership function with a variable hesitation degree. To determine the mapping of IFS's clustering intervals to network states, a distinction index is developed. Furthermore, an IFS ensemble method (IFSE-AD) is proposed to eliminate the impacts of the inconsistent about MFS-TL characteristic to network state and to improve detection performance. Finally, we carried out extensive experiments on some network traffic datasets, and the results validate the effectiveness of our method and demonstrate the superiority of IFSE-AD to state-of-the-art approaches." @default.
- W2897655170 created "2018-10-26" @default.
- W2897655170 creator A5014961410 @default.
- W2897655170 creator A5040371597 @default.
- W2897655170 creator A5060993475 @default.
- W2897655170 creator A5075577652 @default.
- W2897655170 creator A5082967959 @default.
- W2897655170 creator A5087012171 @default.
- W2897655170 creator A5087565242 @default.
- W2897655170 date "2018-01-01" @default.
- W2897655170 modified "2023-09-26" @default.
- W2897655170 title "Using Intuitionistic Fuzzy Set for Anomaly Detection of Network Traffic From Flow Interaction" @default.
- W2897655170 cites W1619888495 @default.
- W2897655170 cites W1687244664 @default.
- W2897655170 cites W1964315431 @default.
- W2897655170 cites W1966643488 @default.
- W2897655170 cites W1966809779 @default.
- W2897655170 cites W1969921454 @default.
- W2897655170 cites W1981107087 @default.
- W2897655170 cites W1983285030 @default.
- W2897655170 cites W1992555583 @default.
- W2897655170 cites W2007861510 @default.
- W2897655170 cites W2017527184 @default.
- W2897655170 cites W2021820673 @default.
- W2897655170 cites W2029074979 @default.
- W2897655170 cites W2036753190 @default.
- W2897655170 cites W2045414949 @default.
- W2897655170 cites W2047818868 @default.
- W2897655170 cites W2053359564 @default.
- W2897655170 cites W2074403295 @default.
- W2897655170 cites W2077488147 @default.
- W2897655170 cites W2081037298 @default.
- W2897655170 cites W2089554624 @default.
- W2897655170 cites W2093859880 @default.
- W2897655170 cites W2097452216 @default.
- W2897655170 cites W2099452399 @default.
- W2897655170 cites W2104837959 @default.
- W2897655170 cites W2111002866 @default.
- W2897655170 cites W2112213600 @default.
- W2897655170 cites W2119895316 @default.
- W2897655170 cites W2130104690 @default.
- W2897655170 cites W2147845504 @default.
- W2897655170 cites W2149726907 @default.
- W2897655170 cites W2150755264 @default.
- W2897655170 cites W2151865696 @default.
- W2897655170 cites W2162120087 @default.
- W2897655170 cites W2162551958 @default.
- W2897655170 cites W2278186031 @default.
- W2897655170 cites W2521472744 @default.
- W2897655170 cites W2603600199 @default.
- W2897655170 cites W2732962200 @default.
- W2897655170 cites W2755787053 @default.
- W2897655170 cites W2789514799 @default.
- W2897655170 cites W2790864385 @default.
- W2897655170 cites W2802898945 @default.
- W2897655170 cites W2805836324 @default.
- W2897655170 cites W309312769 @default.
- W2897655170 cites W3150031559 @default.
- W2897655170 cites W4248336682 @default.
- W2897655170 doi "https://doi.org/10.1109/access.2018.2873291" @default.
- W2897655170 hasPublicationYear "2018" @default.
- W2897655170 type Work @default.
- W2897655170 sameAs 2897655170 @default.
- W2897655170 citedByCount "6" @default.
- W2897655170 countsByYear W28976551702020 @default.
- W2897655170 countsByYear W28976551702021 @default.
- W2897655170 countsByYear W28976551702022 @default.
- W2897655170 crossrefType "journal-article" @default.
- W2897655170 hasAuthorship W2897655170A5014961410 @default.
- W2897655170 hasAuthorship W2897655170A5040371597 @default.
- W2897655170 hasAuthorship W2897655170A5060993475 @default.
- W2897655170 hasAuthorship W2897655170A5075577652 @default.
- W2897655170 hasAuthorship W2897655170A5082967959 @default.
- W2897655170 hasAuthorship W2897655170A5087012171 @default.
- W2897655170 hasAuthorship W2897655170A5087565242 @default.
- W2897655170 hasBestOaLocation W28976551701 @default.
- W2897655170 hasConcept C11413529 @default.
- W2897655170 hasConcept C119857082 @default.
- W2897655170 hasConcept C121332964 @default.
- W2897655170 hasConcept C124101348 @default.
- W2897655170 hasConcept C12997251 @default.
- W2897655170 hasConcept C138885662 @default.
- W2897655170 hasConcept C143724316 @default.
- W2897655170 hasConcept C151730666 @default.
- W2897655170 hasConcept C153180895 @default.
- W2897655170 hasConcept C154945302 @default.
- W2897655170 hasConcept C161584116 @default.
- W2897655170 hasConcept C163716315 @default.
- W2897655170 hasConcept C177264268 @default.
- W2897655170 hasConcept C199360897 @default.
- W2897655170 hasConcept C26873012 @default.
- W2897655170 hasConcept C2779808786 @default.
- W2897655170 hasConcept C41008148 @default.
- W2897655170 hasConcept C41895202 @default.
- W2897655170 hasConcept C58166 @default.
- W2897655170 hasConcept C62520636 @default.
- W2897655170 hasConcept C73555534 @default.
- W2897655170 hasConcept C739882 @default.