Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897660032> ?p ?o ?g. }
- W2897660032 endingPage "510" @default.
- W2897660032 startingPage "498" @default.
- W2897660032 abstract "Sediment source fingerprinting is increasingly used to provide insight into the dynamics of catchment sediment transfer processes, yet relatively few studies seek to validate source apportionments obtained from unmixing models. Our work focuses on simulating natural processes to test the accuracy of source apportionments obtained using a multivariate unmixing model called FingerPro. A relevant laboratory experiment is proposed to test the sensitivity of the model, using as experimental sediments 14 artificial mixtures composed of different proportions and numbers of sources selected from five soils as experimental sources. Twelve artificial mixtures were created by mixing a known proportion of source soils sieved to <63 μm in different proportions obtaining experimental sediments with three or four sources (experiment 1), while two additional artificial mixtures were prepared by combining mixing and sieving to obtain experimental sediments sieved to <40 and < 15 μm (experiment 2). This research aims to test the sensitivity of the model by comparing the estimated source contributions for three sets of selected tracers (experiment 1) and for variations in particle size of the sources and mixtures (experiment 2). Experiment 1 show that source apportionments estimated by the FingerPro model for the same mixture reached maximum differences of 10% by using different tracers, with significantly different GOF and RMSE values between tracer sets (GOF means: 90% set A, 94% set B and 96% set C; RMSE means: 1.9% set A, 3% set B and 2.7% set C). Experiment 2 showed the inconsistency of model outputs when sources and mixtures had different particle size fractions. The accuracy of the model declined as the sediment become finer, and the mean RMSE increased from 2% to 4% up to 12% for mixtures at <63, <20 and < 15 μm, respectively. The source apportionments estimated using a particle size correction factor improved slightly but not in all cases, with a maximum improvement of around one-third of the RMSE (mixture 10-B). Our results highlight the usefulness of employing artificial mixtures to test the accuracy of model simulations based on different tracer selections, source combinations and particle size fractions." @default.
- W2897660032 created "2018-10-26" @default.
- W2897660032 creator A5049865724 @default.
- W2897660032 creator A5062747387 @default.
- W2897660032 creator A5082193418 @default.
- W2897660032 creator A5083349195 @default.
- W2897660032 creator A5088311575 @default.
- W2897660032 date "2019-03-01" @default.
- W2897660032 modified "2023-10-07" @default.
- W2897660032 title "Testing the sensitivity of a multivariate mixing model using geochemical fingerprints with artificial mixtures" @default.
- W2897660032 cites W1192496314 @default.
- W2897660032 cites W1569322641 @default.
- W2897660032 cites W1569961924 @default.
- W2897660032 cites W1580623970 @default.
- W2897660032 cites W1582227027 @default.
- W2897660032 cites W1715844396 @default.
- W2897660032 cites W1721068294 @default.
- W2897660032 cites W1803816305 @default.
- W2897660032 cites W1831290908 @default.
- W2897660032 cites W1932487143 @default.
- W2897660032 cites W1973845328 @default.
- W2897660032 cites W1974731359 @default.
- W2897660032 cites W1985423629 @default.
- W2897660032 cites W1987017053 @default.
- W2897660032 cites W1987309103 @default.
- W2897660032 cites W1991190000 @default.
- W2897660032 cites W2003242092 @default.
- W2897660032 cites W2004682770 @default.
- W2897660032 cites W2016682474 @default.
- W2897660032 cites W2038715070 @default.
- W2897660032 cites W2039199877 @default.
- W2897660032 cites W2040436627 @default.
- W2897660032 cites W2041189415 @default.
- W2897660032 cites W2045255606 @default.
- W2897660032 cites W2051856101 @default.
- W2897660032 cites W2054705476 @default.
- W2897660032 cites W2059350610 @default.
- W2897660032 cites W2065775350 @default.
- W2897660032 cites W2067762130 @default.
- W2897660032 cites W2081292355 @default.
- W2897660032 cites W2085466627 @default.
- W2897660032 cites W2086330167 @default.
- W2897660032 cites W2088453311 @default.
- W2897660032 cites W2097833538 @default.
- W2897660032 cites W2103249142 @default.
- W2897660032 cites W2112556614 @default.
- W2897660032 cites W2113846935 @default.
- W2897660032 cites W2126029485 @default.
- W2897660032 cites W2147467262 @default.
- W2897660032 cites W2154555113 @default.
- W2897660032 cites W2160352226 @default.
- W2897660032 cites W2301055622 @default.
- W2897660032 cites W2345931272 @default.
- W2897660032 cites W2514032014 @default.
- W2897660032 cites W2530871456 @default.
- W2897660032 cites W2590246495 @default.
- W2897660032 cites W2606612220 @default.
- W2897660032 cites W2606883145 @default.
- W2897660032 cites W2612281914 @default.
- W2897660032 cites W2780603892 @default.
- W2897660032 cites W2797358372 @default.
- W2897660032 doi "https://doi.org/10.1016/j.geoderma.2018.10.005" @default.
- W2897660032 hasPublicationYear "2019" @default.
- W2897660032 type Work @default.
- W2897660032 sameAs 2897660032 @default.
- W2897660032 citedByCount "49" @default.
- W2897660032 countsByYear W28976600322019 @default.
- W2897660032 countsByYear W28976600322020 @default.
- W2897660032 countsByYear W28976600322021 @default.
- W2897660032 countsByYear W28976600322022 @default.
- W2897660032 countsByYear W28976600322023 @default.
- W2897660032 crossrefType "journal-article" @default.
- W2897660032 hasAuthorship W2897660032A5049865724 @default.
- W2897660032 hasAuthorship W2897660032A5062747387 @default.
- W2897660032 hasAuthorship W2897660032A5082193418 @default.
- W2897660032 hasAuthorship W2897660032A5083349195 @default.
- W2897660032 hasAuthorship W2897660032A5088311575 @default.
- W2897660032 hasBestOaLocation W28976600322 @default.
- W2897660032 hasConcept C105795698 @default.
- W2897660032 hasConcept C121332964 @default.
- W2897660032 hasConcept C127313418 @default.
- W2897660032 hasConcept C127413603 @default.
- W2897660032 hasConcept C138777275 @default.
- W2897660032 hasConcept C147789679 @default.
- W2897660032 hasConcept C151730666 @default.
- W2897660032 hasConcept C159390177 @default.
- W2897660032 hasConcept C161584116 @default.
- W2897660032 hasConcept C185544564 @default.
- W2897660032 hasConcept C185592680 @default.
- W2897660032 hasConcept C186060115 @default.
- W2897660032 hasConcept C187530423 @default.
- W2897660032 hasConcept C21200559 @default.
- W2897660032 hasConcept C24326235 @default.
- W2897660032 hasConcept C2778863792 @default.
- W2897660032 hasConcept C2816523 @default.
- W2897660032 hasConcept C33923547 @default.
- W2897660032 hasConcept C39432304 @default.
- W2897660032 hasConcept C62520636 @default.