Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897664178> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2897664178 abstract "The threat of distributed denial of service (DDoS) attacks has worsened recently with the proliferation of unsecured Internet of Things (IoT) devices. Detecting these attacks is often difficult when using a traditional networking paradigm as network information and control are decentralised. We study the effectiveness of using machine learning (ML) to detect DDoS attacks, facilitated by Software-Defined Networking (SDN), a recent paradigm that aims to improve network management by centralising network information and control. In this study, ML algorithms are implemented on nmeta2, an SDN-based traffic classification architecture, and evaluated on a physical network testbed to demonstrate their efficacy during a DDoS attack scenario, especially in accurately classifying non-malicious traffic. This is unlike most approaches that aim to identify/classify malicious traffic but also misclassify non-malicious traffic, inadvertently leading to degraded performance for legitimate network traffic. Furthermore, there is potentially considerable data loss during DDoS attacks that can further degrade classification performance. We examine these issues that arise when using ML to detect DDoS attacks in live network scenarios." @default.
- W2897664178 created "2018-10-26" @default.
- W2897664178 creator A5036767777 @default.
- W2897664178 creator A5089259830 @default.
- W2897664178 creator A5090048437 @default.
- W2897664178 date "2018-07-01" @default.
- W2897664178 modified "2023-10-16" @default.
- W2897664178 title "Can Machine Learning Techniques Be Effectively Used in Real Networks against DDoS Attacks?" @default.
- W2897664178 cites W1549477237 @default.
- W2897664178 cites W1583113493 @default.
- W2897664178 cites W1851843436 @default.
- W2897664178 cites W1974799041 @default.
- W2897664178 cites W2017524370 @default.
- W2897664178 cites W2031163547 @default.
- W2897664178 cites W2074789364 @default.
- W2897664178 cites W2104692292 @default.
- W2897664178 cites W2161251616 @default.
- W2897664178 cites W2163375756 @default.
- W2897664178 cites W2183397118 @default.
- W2897664178 cites W2514173981 @default.
- W2897664178 cites W2612956469 @default.
- W2897664178 cites W2777186602 @default.
- W2897664178 cites W2911964244 @default.
- W2897664178 doi "https://doi.org/10.1109/icccn.2018.8487445" @default.
- W2897664178 hasPublicationYear "2018" @default.
- W2897664178 type Work @default.
- W2897664178 sameAs 2897664178 @default.
- W2897664178 citedByCount "11" @default.
- W2897664178 countsByYear W28976641782019 @default.
- W2897664178 countsByYear W28976641782020 @default.
- W2897664178 countsByYear W28976641782022 @default.
- W2897664178 countsByYear W28976641782023 @default.
- W2897664178 crossrefType "proceedings-article" @default.
- W2897664178 hasAuthorship W2897664178A5036767777 @default.
- W2897664178 hasAuthorship W2897664178A5089259830 @default.
- W2897664178 hasAuthorship W2897664178A5090048437 @default.
- W2897664178 hasConcept C110875604 @default.
- W2897664178 hasConcept C120865594 @default.
- W2897664178 hasConcept C129763632 @default.
- W2897664178 hasConcept C136764020 @default.
- W2897664178 hasConcept C22735295 @default.
- W2897664178 hasConcept C31258907 @default.
- W2897664178 hasConcept C31395832 @default.
- W2897664178 hasConcept C38652104 @default.
- W2897664178 hasConcept C38822068 @default.
- W2897664178 hasConcept C41008148 @default.
- W2897664178 hasConcept C43639116 @default.
- W2897664178 hasConcept C77270119 @default.
- W2897664178 hasConceptScore W2897664178C110875604 @default.
- W2897664178 hasConceptScore W2897664178C120865594 @default.
- W2897664178 hasConceptScore W2897664178C129763632 @default.
- W2897664178 hasConceptScore W2897664178C136764020 @default.
- W2897664178 hasConceptScore W2897664178C22735295 @default.
- W2897664178 hasConceptScore W2897664178C31258907 @default.
- W2897664178 hasConceptScore W2897664178C31395832 @default.
- W2897664178 hasConceptScore W2897664178C38652104 @default.
- W2897664178 hasConceptScore W2897664178C38822068 @default.
- W2897664178 hasConceptScore W2897664178C41008148 @default.
- W2897664178 hasConceptScore W2897664178C43639116 @default.
- W2897664178 hasConceptScore W2897664178C77270119 @default.
- W2897664178 hasLocation W28976641781 @default.
- W2897664178 hasOpenAccess W2897664178 @default.
- W2897664178 hasPrimaryLocation W28976641781 @default.
- W2897664178 hasRelatedWork W2001331025 @default.
- W2897664178 hasRelatedWork W2063104870 @default.
- W2897664178 hasRelatedWork W2097156747 @default.
- W2897664178 hasRelatedWork W2204131204 @default.
- W2897664178 hasRelatedWork W2292210693 @default.
- W2897664178 hasRelatedWork W2783466926 @default.
- W2897664178 hasRelatedWork W2887235364 @default.
- W2897664178 hasRelatedWork W2942864670 @default.
- W2897664178 hasRelatedWork W3132742126 @default.
- W2897664178 hasRelatedWork W4286539397 @default.
- W2897664178 isParatext "false" @default.
- W2897664178 isRetracted "false" @default.
- W2897664178 magId "2897664178" @default.
- W2897664178 workType "article" @default.