Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897664897> ?p ?o ?g. }
- W2897664897 abstract "Measuring the error by an l^1-norm, we analyze under sparsity assumptions an l^0-regularization approach, where the penalty in the Tikhonov functional is complemented by a general stabilizing convex functional. In this context, ill-posed operator equations Ax = y with an injective and bounded linear operator A mapping between l^2 and a Banach space Y are regularized. For sparse solutions, error estimates as well as linear and sublinear convergence rates are derived based on a variational inequality approach, where the regularization parameter can be chosen either a priori in an appropriate way or a posteriori by the sequential discrepancy principle. To further illustrate the balance between the l^0-term and the complementing convex penalty, the important special case of the l^2-norm square penalty is investigated showing explicit dependence between both terms. Finally, some numerical experiments verify and illustrate the sparsity promoting properties of corresponding regularized solutions." @default.
- W2897664897 created "2018-10-26" @default.
- W2897664897 creator A5006439118 @default.
- W2897664897 creator A5012433446 @default.
- W2897664897 creator A5046597133 @default.
- W2897664897 creator A5059831151 @default.
- W2897664897 date "2018-10-20" @default.
- W2897664897 modified "2023-09-23" @default.
- W2897664897 title "Tikhonov regularization with l^0-term complementing a convex penalty: l^1 convergence under sparsity constraints" @default.
- W2897664897 cites W1544177383 @default.
- W2897664897 cites W1966190090 @default.
- W2897664897 cites W1990386944 @default.
- W2897664897 cites W1993118533 @default.
- W2897664897 cites W2004632554 @default.
- W2897664897 cites W2004653286 @default.
- W2897664897 cites W2015551786 @default.
- W2897664897 cites W2022748278 @default.
- W2897664897 cites W2023206259 @default.
- W2897664897 cites W2026132654 @default.
- W2897664897 cites W2041478165 @default.
- W2897664897 cites W2060041011 @default.
- W2897664897 cites W2067354736 @default.
- W2897664897 cites W2076264645 @default.
- W2897664897 cites W2076459223 @default.
- W2897664897 cites W2086726709 @default.
- W2897664897 cites W2100414529 @default.
- W2897664897 cites W2105630053 @default.
- W2897664897 cites W2115266937 @default.
- W2897664897 cites W2122825543 @default.
- W2897664897 cites W2150192920 @default.
- W2897664897 cites W2163898559 @default.
- W2897664897 cites W2187459154 @default.
- W2897664897 cites W2323677098 @default.
- W2897664897 cites W2399213862 @default.
- W2897664897 cites W2494981441 @default.
- W2897664897 cites W3103197010 @default.
- W2897664897 cites W3103262095 @default.
- W2897664897 cites W632810616 @default.
- W2897664897 cites W72809607 @default.
- W2897664897 cites W2103789667 @default.
- W2897664897 doi "https://doi.org/10.48550/arxiv.1810.08775" @default.
- W2897664897 hasPublicationYear "2018" @default.
- W2897664897 type Work @default.
- W2897664897 sameAs 2897664897 @default.
- W2897664897 citedByCount "0" @default.
- W2897664897 crossrefType "posted-content" @default.
- W2897664897 hasAuthorship W2897664897A5006439118 @default.
- W2897664897 hasAuthorship W2897664897A5012433446 @default.
- W2897664897 hasAuthorship W2897664897A5046597133 @default.
- W2897664897 hasAuthorship W2897664897A5059831151 @default.
- W2897664897 hasBestOaLocation W28976648971 @default.
- W2897664897 hasConcept C111472728 @default.
- W2897664897 hasConcept C117160843 @default.
- W2897664897 hasConcept C126255220 @default.
- W2897664897 hasConcept C128107574 @default.
- W2897664897 hasConcept C132954091 @default.
- W2897664897 hasConcept C134306372 @default.
- W2897664897 hasConcept C135252773 @default.
- W2897664897 hasConcept C138885662 @default.
- W2897664897 hasConcept C141718189 @default.
- W2897664897 hasConcept C152442038 @default.
- W2897664897 hasConcept C154945302 @default.
- W2897664897 hasConcept C161999928 @default.
- W2897664897 hasConcept C17744445 @default.
- W2897664897 hasConcept C191795146 @default.
- W2897664897 hasConcept C199539241 @default.
- W2897664897 hasConcept C202444582 @default.
- W2897664897 hasConcept C2776135515 @default.
- W2897664897 hasConcept C27872270 @default.
- W2897664897 hasConcept C28826006 @default.
- W2897664897 hasConcept C33923547 @default.
- W2897664897 hasConcept C34388435 @default.
- W2897664897 hasConcept C41008148 @default.
- W2897664897 hasConcept C6180225 @default.
- W2897664897 hasConcept C62799726 @default.
- W2897664897 hasConcept C75553542 @default.
- W2897664897 hasConceptScore W2897664897C111472728 @default.
- W2897664897 hasConceptScore W2897664897C117160843 @default.
- W2897664897 hasConceptScore W2897664897C126255220 @default.
- W2897664897 hasConceptScore W2897664897C128107574 @default.
- W2897664897 hasConceptScore W2897664897C132954091 @default.
- W2897664897 hasConceptScore W2897664897C134306372 @default.
- W2897664897 hasConceptScore W2897664897C135252773 @default.
- W2897664897 hasConceptScore W2897664897C138885662 @default.
- W2897664897 hasConceptScore W2897664897C141718189 @default.
- W2897664897 hasConceptScore W2897664897C152442038 @default.
- W2897664897 hasConceptScore W2897664897C154945302 @default.
- W2897664897 hasConceptScore W2897664897C161999928 @default.
- W2897664897 hasConceptScore W2897664897C17744445 @default.
- W2897664897 hasConceptScore W2897664897C191795146 @default.
- W2897664897 hasConceptScore W2897664897C199539241 @default.
- W2897664897 hasConceptScore W2897664897C202444582 @default.
- W2897664897 hasConceptScore W2897664897C2776135515 @default.
- W2897664897 hasConceptScore W2897664897C27872270 @default.
- W2897664897 hasConceptScore W2897664897C28826006 @default.
- W2897664897 hasConceptScore W2897664897C33923547 @default.
- W2897664897 hasConceptScore W2897664897C34388435 @default.
- W2897664897 hasConceptScore W2897664897C41008148 @default.
- W2897664897 hasConceptScore W2897664897C6180225 @default.
- W2897664897 hasConceptScore W2897664897C62799726 @default.