Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897692380> ?p ?o ?g. }
- W2897692380 endingPage "206" @default.
- W2897692380 startingPage "172" @default.
- W2897692380 abstract "Abstract Interactions of impurity interstitial atoms with dislocations may play an important role in strengthening of structural materials as well as in other phenomena like hydrogen embrittlement. Impurity interstitial atoms occupy octahedral (typical for carbon) or tetrahedral (typical for hydrogen) sites in bcc metals, both showing solely tetragonal symmetry of three types distinguished by orientation with respect to the main crystallographic (1, 2, 3) directions. Placing an atom at one of such sites one of the three types of local multiaxial eigenstrain states is provoked. This eigenstrain state interacts with the stress field of the dislocation, and the corresponding interaction term provides a mechanical part of the generalized chemical potential of the interstitial component. For a proper description of the distribution of the interstitial component in the stressed lattice three site fractions X1, X2 and X3, corresponding to the types of sites, are necessary. Interstitials like hydrogen and carbon are mobile even at room temperature and diffuse spontaneously to places with the lowest interaction energy. As the individual types of interstitial sites are interconnected by fast diffusion paths, one can assume local equilibrium among atoms occupying the three types of interstitial sites. This fact is expressed by a unique value of their generalized chemical potential. The gradient of this potential drives diffusion of interstitial atoms. At any time the atoms redistribute locally to the three types of sites according to the condition of local equilibrium. Thus, generally in the stressed bcc lattice the three site fractions X1, X2 and X3 have different values and provoke a multiaxial eigenstrain state resulting in an eigenstress state. Hence, the stress field of the dislocation is superposed by the eigenstress state. This may cause a significant relaxation (i.e. reduction) of the total stress state depending on the amount of the interstitial atoms in the system and their diffusion kinetics. Very recently, the individual diffusion paths of interstitial atoms occupying octahedral or tetrahedral positions in a stressed bcc lattice have been identified. The respective model predicts a significant anisotropy of diffusion caused by the differences in local values of X1, X2 and X3 in addition to the standard elastodiffusion due to deformation of the lattice. This leads to a significant modification of the standard diffusion equation, because the introduced “diffusion occupancy factors” are directly dependent on the values of X1, X2 and X3. Assuming a straight dislocation (with its dislocation line coinciding with the z-coordinate axis and the slip plane as the x-z-plane of the local coordinate system) and its interaction with the interstitial component, it is advantageous to evaluate the eigenstrain tensor in the local coordinate system (x, y, z) and solve the problem in that system. Then the space around the dislocation can be divided into cylindrical representative volume elements with axes parallel to z-axis and small cross-sections in x- and y- directions. In each of the representative volume elements spatially constant values of X1, X2 and X3 and of the eigenstrain tensor are assumed. As one can calculate the eigenstress state inside and outside of each cylindrical representative volume element, embedded in an eigenstrain-free infinite matrix, the total stress state is then given by linear superposition of the eigenstress states of all representative volume elements and the stress state induced by the dislocation. The goal of the proposed review paper is to comprise a collection of the knowledge of the last seven decades dealing with the following topics: • stress fields induced by edge and screw dislocation; a presentation of the most recent solution technique and discussion of previous solutions; • eigenstrains of carbon and hydrogen atoms placed in octahedral and tetrahedral sites; a selection of the values of reliable sources; • assembling of the interstitial atoms, acting as inclusions with a misfit eigenstrain state, in cylindrical representative volume elements; • eigenstrain states in cylindrical representative volume elements due to occupancy of interstitial atoms described by X1, X2 and X3; • eigenstress fields generated by eigenstrains in cylindrical representative volume elements; • formulation of the generalized chemical potential of interstitial atoms in the stressed bcc lattice; • anisotropic diffusion equations for interstitials in a stressed bcc lattice, accounting for elastodiffusion and the effect of occupancy of different types of interstitial sites. A collection of equations provides a basis for acquiring a complex model of kinetics of interactions of interstitial atoms with (especially prioritizing) dislocations in the bcc lattice. This represents the “research part” of the review paper. Thus the paper focuses on kinetics of interactions of interstitials occupying tetrahedral and octahedral positions with edge and screw dislocations. As results of simulations the kinetics of distribution of the site fractions X1, X2 and X3 around the dislocation as well as the relaxation (i.e. reduction) of the dislocation stress due to eigenstress are provided." @default.
- W2897692380 created "2018-10-26" @default.
- W2897692380 creator A5018620635 @default.
- W2897692380 creator A5029395766 @default.
- W2897692380 creator A5035803255 @default.
- W2897692380 creator A5052285512 @default.
- W2897692380 creator A5083093461 @default.
- W2897692380 date "2019-04-01" @default.
- W2897692380 modified "2023-10-02" @default.
- W2897692380 title "Kinetics of interaction of impurity interstitials with dislocations revisited" @default.
- W2897692380 cites W130747672 @default.
- W2897692380 cites W1672144842 @default.
- W2897692380 cites W1853321734 @default.
- W2897692380 cites W1963775554 @default.
- W2897692380 cites W1965155187 @default.
- W2897692380 cites W1965179367 @default.
- W2897692380 cites W1970127494 @default.
- W2897692380 cites W1973055757 @default.
- W2897692380 cites W1977297419 @default.
- W2897692380 cites W1981338907 @default.
- W2897692380 cites W1981850016 @default.
- W2897692380 cites W1982514329 @default.
- W2897692380 cites W1984291381 @default.
- W2897692380 cites W1984466948 @default.
- W2897692380 cites W1984667993 @default.
- W2897692380 cites W1988194934 @default.
- W2897692380 cites W1990810830 @default.
- W2897692380 cites W1991051481 @default.
- W2897692380 cites W1993713705 @default.
- W2897692380 cites W1996218740 @default.
- W2897692380 cites W1998829385 @default.
- W2897692380 cites W1999430315 @default.
- W2897692380 cites W2001019776 @default.
- W2897692380 cites W2003081371 @default.
- W2897692380 cites W2003288289 @default.
- W2897692380 cites W2007395042 @default.
- W2897692380 cites W2009992376 @default.
- W2897692380 cites W2013001661 @default.
- W2897692380 cites W2013374424 @default.
- W2897692380 cites W2016168218 @default.
- W2897692380 cites W2018182840 @default.
- W2897692380 cites W2026203472 @default.
- W2897692380 cites W2027184803 @default.
- W2897692380 cites W2027390648 @default.
- W2897692380 cites W2027599841 @default.
- W2897692380 cites W2029955487 @default.
- W2897692380 cites W2030860679 @default.
- W2897692380 cites W2030948831 @default.
- W2897692380 cites W2032442604 @default.
- W2897692380 cites W2036113194 @default.
- W2897692380 cites W2036197996 @default.
- W2897692380 cites W2041301499 @default.
- W2897692380 cites W2042231911 @default.
- W2897692380 cites W2043936207 @default.
- W2897692380 cites W2044945960 @default.
- W2897692380 cites W2045419174 @default.
- W2897692380 cites W2045501946 @default.
- W2897692380 cites W2047516837 @default.
- W2897692380 cites W2047983510 @default.
- W2897692380 cites W2058670631 @default.
- W2897692380 cites W2062576894 @default.
- W2897692380 cites W2066222691 @default.
- W2897692380 cites W2071614700 @default.
- W2897692380 cites W2076561560 @default.
- W2897692380 cites W2080939298 @default.
- W2897692380 cites W2083222334 @default.
- W2897692380 cites W2083228317 @default.
- W2897692380 cites W2085856544 @default.
- W2897692380 cites W2086387735 @default.
- W2897692380 cites W2087421808 @default.
- W2897692380 cites W2090586533 @default.
- W2897692380 cites W2090832912 @default.
- W2897692380 cites W2092779588 @default.
- W2897692380 cites W2095618932 @default.
- W2897692380 cites W2096043883 @default.
- W2897692380 cites W2096105657 @default.
- W2897692380 cites W2102688183 @default.
- W2897692380 cites W2118802525 @default.
- W2897692380 cites W2164875002 @default.
- W2897692380 cites W2169856289 @default.
- W2897692380 cites W2243958819 @default.
- W2897692380 cites W2286176839 @default.
- W2897692380 cites W2332894965 @default.
- W2897692380 cites W2393324651 @default.
- W2897692380 cites W2479864333 @default.
- W2897692380 cites W2516639532 @default.
- W2897692380 cites W2520387729 @default.
- W2897692380 cites W2533533772 @default.
- W2897692380 cites W2537664546 @default.
- W2897692380 cites W2560447609 @default.
- W2897692380 cites W2562268010 @default.
- W2897692380 cites W2563197999 @default.
- W2897692380 cites W2592898882 @default.
- W2897692380 cites W2620117279 @default.
- W2897692380 cites W2734596353 @default.
- W2897692380 cites W2751759838 @default.
- W2897692380 cites W2767142488 @default.
- W2897692380 cites W2767284394 @default.