Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897701541> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2897701541 abstract "Generative Adversarial Networks (GAN), which are capable of generating realistic synthetic real-valued data, have achieved great progress in machine learning field. However, generator in GAN framework requires being differentiable, which means that the generator cannot produce discrete data, and it poses great challenge for GAN applied in Natural Language Processing (NLP) research. To unlock the potential of GAN in NLP, we develop a novel Text-to-Text Generative Adversarial Networks (TT-GAN), through which we can get generated text based on semantic information translated from source text. We demonstrate that our model can generate not only realistic texts, but also the source text's paraphrase or its semantic summarization. As our best knowledge, it is the first framework capable of generating natural language on semantic level in real sense, and gives a new perspective to apply GAN on NLP research." @default.
- W2897701541 created "2018-10-26" @default.
- W2897701541 creator A5039635290 @default.
- W2897701541 creator A5052953438 @default.
- W2897701541 creator A5067078932 @default.
- W2897701541 date "2018-07-01" @default.
- W2897701541 modified "2023-09-24" @default.
- W2897701541 title "Text-To-Text Generative Adversarial Networks" @default.
- W2897701541 cites W2119717200 @default.
- W2897701541 cites W2963168371 @default.
- W2897701541 doi "https://doi.org/10.1109/ijcnn.2018.8489624" @default.
- W2897701541 hasPublicationYear "2018" @default.
- W2897701541 type Work @default.
- W2897701541 sameAs 2897701541 @default.
- W2897701541 citedByCount "12" @default.
- W2897701541 countsByYear W28977015412019 @default.
- W2897701541 countsByYear W28977015412020 @default.
- W2897701541 countsByYear W28977015412021 @default.
- W2897701541 countsByYear W28977015412022 @default.
- W2897701541 countsByYear W28977015412023 @default.
- W2897701541 crossrefType "proceedings-article" @default.
- W2897701541 hasAuthorship W2897701541A5039635290 @default.
- W2897701541 hasAuthorship W2897701541A5052953438 @default.
- W2897701541 hasAuthorship W2897701541A5067078932 @default.
- W2897701541 hasConcept C121332964 @default.
- W2897701541 hasConcept C154945302 @default.
- W2897701541 hasConcept C163258240 @default.
- W2897701541 hasConcept C170858558 @default.
- W2897701541 hasConcept C184337299 @default.
- W2897701541 hasConcept C195324797 @default.
- W2897701541 hasConcept C199360897 @default.
- W2897701541 hasConcept C204321447 @default.
- W2897701541 hasConcept C2776187449 @default.
- W2897701541 hasConcept C2779439875 @default.
- W2897701541 hasConcept C2780922921 @default.
- W2897701541 hasConcept C2780992000 @default.
- W2897701541 hasConcept C2985684807 @default.
- W2897701541 hasConcept C37736160 @default.
- W2897701541 hasConcept C39890363 @default.
- W2897701541 hasConcept C41008148 @default.
- W2897701541 hasConcept C62520636 @default.
- W2897701541 hasConceptScore W2897701541C121332964 @default.
- W2897701541 hasConceptScore W2897701541C154945302 @default.
- W2897701541 hasConceptScore W2897701541C163258240 @default.
- W2897701541 hasConceptScore W2897701541C170858558 @default.
- W2897701541 hasConceptScore W2897701541C184337299 @default.
- W2897701541 hasConceptScore W2897701541C195324797 @default.
- W2897701541 hasConceptScore W2897701541C199360897 @default.
- W2897701541 hasConceptScore W2897701541C204321447 @default.
- W2897701541 hasConceptScore W2897701541C2776187449 @default.
- W2897701541 hasConceptScore W2897701541C2779439875 @default.
- W2897701541 hasConceptScore W2897701541C2780922921 @default.
- W2897701541 hasConceptScore W2897701541C2780992000 @default.
- W2897701541 hasConceptScore W2897701541C2985684807 @default.
- W2897701541 hasConceptScore W2897701541C37736160 @default.
- W2897701541 hasConceptScore W2897701541C39890363 @default.
- W2897701541 hasConceptScore W2897701541C41008148 @default.
- W2897701541 hasConceptScore W2897701541C62520636 @default.
- W2897701541 hasLocation W28977015411 @default.
- W2897701541 hasOpenAccess W2897701541 @default.
- W2897701541 hasPrimaryLocation W28977015411 @default.
- W2897701541 hasRelatedWork W2058609994 @default.
- W2897701541 hasRelatedWork W2169546346 @default.
- W2897701541 hasRelatedWork W2587329402 @default.
- W2897701541 hasRelatedWork W2710833826 @default.
- W2897701541 hasRelatedWork W2757136988 @default.
- W2897701541 hasRelatedWork W3014018559 @default.
- W2897701541 hasRelatedWork W3022419803 @default.
- W2897701541 hasRelatedWork W4206152009 @default.
- W2897701541 hasRelatedWork W4206537394 @default.
- W2897701541 hasRelatedWork W4230699509 @default.
- W2897701541 isParatext "false" @default.
- W2897701541 isRetracted "false" @default.
- W2897701541 magId "2897701541" @default.
- W2897701541 workType "article" @default.