Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897711745> ?p ?o ?g. }
- W2897711745 abstract "Traditionally science is done using the reductionism paradigm. Artificial intelligence does not make an exception and it follows the same strategy. At the same time, network science tries to study complex systems as a whole. This synopsis presents my PhD thesis which takes an alternative approach to the reductionism strategy, with the aim to advance both fields, advocating that major breakthroughs can be made when these two are combined. The thesis illustrates this bidirectional relation by: (1) proposing a new method which uses artificial intelligence to improve network science algorithms (i.e. a new centrality metric which computes fully decentralized the nodes and links importance, on the polylogarithmic scale with respect to the number of nodes in the network); and (2) proposing two methods which take inspiration from network science to improve artificial intelligence algorithms (e.g. quadratic acceleration in terms of memory requirements and computational speed of artificial neural network fully connected layers during both, training and inference)." @default.
- W2897711745 created "2018-10-26" @default.
- W2897711745 creator A5011045254 @default.
- W2897711745 date "2018-09-01" @default.
- W2897711745 modified "2023-10-06" @default.
- W2897711745 title "Synopsis of the PhD Thesis - Network Computations in Artificial Intelligence" @default.
- W2897711745 cites W1509997443 @default.
- W2897711745 cites W1583495910 @default.
- W2897711745 cites W1662467718 @default.
- W2897711745 cites W1777214121 @default.
- W2897711745 cites W1850335099 @default.
- W2897711745 cites W1972842558 @default.
- W2897711745 cites W1981949323 @default.
- W2897711745 cites W1997064109 @default.
- W2897711745 cites W2014022174 @default.
- W2897711745 cites W2018042555 @default.
- W2897711745 cites W2018259456 @default.
- W2897711745 cites W2050601254 @default.
- W2897711745 cites W2056944867 @default.
- W2897711745 cites W2061931848 @default.
- W2897711745 cites W2063497316 @default.
- W2897711745 cites W2068571210 @default.
- W2897711745 cites W2070857404 @default.
- W2897711745 cites W2106262311 @default.
- W2897711745 cites W2107995569 @default.
- W2897711745 cites W2119512550 @default.
- W2897711745 cites W2130790725 @default.
- W2897711745 cites W2136163184 @default.
- W2897711745 cites W2142957722 @default.
- W2897711745 cites W2144228257 @default.
- W2897711745 cites W2151455464 @default.
- W2897711745 cites W2160115902 @default.
- W2897711745 cites W2161304138 @default.
- W2897711745 cites W2161371274 @default.
- W2897711745 cites W2164727176 @default.
- W2897711745 cites W2181867278 @default.
- W2897711745 cites W21866383 @default.
- W2897711745 cites W2205039763 @default.
- W2897711745 cites W2252795400 @default.
- W2897711745 cites W2281071090 @default.
- W2897711745 cites W2295959395 @default.
- W2897711745 cites W2325018647 @default.
- W2897711745 cites W2336327852 @default.
- W2897711745 cites W2337788193 @default.
- W2897711745 cites W2338785861 @default.
- W2897711745 cites W2344785342 @default.
- W2897711745 cites W2468725259 @default.
- W2897711745 cites W2530917347 @default.
- W2897711745 cites W2544346413 @default.
- W2897711745 cites W2552008476 @default.
- W2897711745 cites W2569392292 @default.
- W2897711745 cites W2578460513 @default.
- W2897711745 cites W2586104950 @default.
- W2897711745 cites W2604764451 @default.
- W2897711745 cites W2787577430 @default.
- W2897711745 cites W2919115771 @default.
- W2897711745 cites W2963317745 @default.
- W2897711745 cites W3098224608 @default.
- W2897711745 cites W3101584733 @default.
- W2897711745 cites W3103071483 @default.
- W2897711745 cites W4238452917 @default.
- W2897711745 cites W1572517243 @default.
- W2897711745 cites W1966854796 @default.
- W2897711745 doi "https://doi.org/10.1109/itc30.2018.00027" @default.
- W2897711745 hasPublicationYear "2018" @default.
- W2897711745 type Work @default.
- W2897711745 sameAs 2897711745 @default.
- W2897711745 citedByCount "2" @default.
- W2897711745 countsByYear W28977117452019 @default.
- W2897711745 countsByYear W28977117452023 @default.
- W2897711745 crossrefType "proceedings-article" @default.
- W2897711745 hasAuthorship W2897711745A5011045254 @default.
- W2897711745 hasBestOaLocation W28977117452 @default.
- W2897711745 hasConcept C111472728 @default.
- W2897711745 hasConcept C11413529 @default.
- W2897711745 hasConcept C114614502 @default.
- W2897711745 hasConcept C117045392 @default.
- W2897711745 hasConcept C124101348 @default.
- W2897711745 hasConcept C127413603 @default.
- W2897711745 hasConcept C136764020 @default.
- W2897711745 hasConcept C137753397 @default.
- W2897711745 hasConcept C138885662 @default.
- W2897711745 hasConcept C139502532 @default.
- W2897711745 hasConcept C154945302 @default.
- W2897711745 hasConcept C173366509 @default.
- W2897711745 hasConcept C176217482 @default.
- W2897711745 hasConcept C21547014 @default.
- W2897711745 hasConcept C25343380 @default.
- W2897711745 hasConcept C2776214188 @default.
- W2897711745 hasConcept C33923547 @default.
- W2897711745 hasConcept C34947359 @default.
- W2897711745 hasConcept C41008148 @default.
- W2897711745 hasConcept C45374587 @default.
- W2897711745 hasConcept C50644808 @default.
- W2897711745 hasConcept C53811970 @default.
- W2897711745 hasConcept C80444323 @default.
- W2897711745 hasConceptScore W2897711745C111472728 @default.
- W2897711745 hasConceptScore W2897711745C11413529 @default.
- W2897711745 hasConceptScore W2897711745C114614502 @default.
- W2897711745 hasConceptScore W2897711745C117045392 @default.