Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897717481> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2897717481 endingPage "102" @default.
- W2897717481 startingPage "95" @default.
- W2897717481 abstract "Digital Image Correlation (DIC) is a popular non-contact image-based full-field deformation measurement tool widely used in mechanics. In spite of its significant advantages, it is still primarily used as a post-processing tool due to its computational cost. In recent years, parallel computing platforms such as multi-core processors and Graphics Processing Units (GPUs) have been used to improve the speed of the DIC algorithm, with GPUs being well-suited for implementing data-parallel operations. Previous works have performed GPU-based DIC wherein each sub-image (i.e. a collection of a few pixels in the local neighborhood of a point of interest) is allocated to a single thread on the GPU, thus achieving parallelism across sub-images. However, this is not the only type of parallelism that is possible: one can also achieve parallelism within a sub-image as well as across whole images. The aim of this work is to efficiently implement 2D-DIC such that parallelism within a sub-image as well as across sub-images leads to considerable reduction in computation time. We use a heterogeneous framework consisting of an Intel Xeon octa-core CPU and an Nvidia Tesla K20C GPU card in this work. The CPU is used to handle image pre-processing, whereas the GPU is used to process four compute-intensive tasks: affine shape function computation, B-Spline interpolation, residual vector calculation and deformation vector update. Parallelization within and across sub-images is achieved in this work by efficient thread handling and use of pre-compiled BLAS libraries. In order to estimate the speedup provided by the GPU, the same four tasks were also evaluated on the octa-core CPU; a speedup of approximately 7 to 5 times was observed for a single sub-image whose size varies from 21×21 to 61×61 respectively. However, it is expected that for a larger number of sub-images, the GPU speedup will be higher and this is indeed the case: when the affine shape function computation and B-Spline interpolation steps were evaluated on 1869 21×21 pixel sub-images, the speedup was around a more impressive 453 times. Further GPU optimization as well as parallelization across image pairs is currently underway and even faster GPU-assisted DIC seems achievable." @default.
- W2897717481 created "2018-10-26" @default.
- W2897717481 creator A5002377796 @default.
- W2897717481 creator A5018046405 @default.
- W2897717481 creator A5055371919 @default.
- W2897717481 date "2018-10-12" @default.
- W2897717481 modified "2023-09-26" @default.
- W2897717481 title "Fast, Sub-pixel Accurate Digital Image Correlation Algorithm Powered by Heterogeneous (CPU-GPU) Framework" @default.
- W2897717481 cites W1585350690 @default.
- W2897717481 cites W1979966596 @default.
- W2897717481 cites W2006597128 @default.
- W2897717481 cites W2022947042 @default.
- W2897717481 cites W2035379092 @default.
- W2897717481 cites W2035616613 @default.
- W2897717481 cites W2055163425 @default.
- W2897717481 cites W2080911342 @default.
- W2897717481 cites W2088855973 @default.
- W2897717481 cites W2090698642 @default.
- W2897717481 cites W2090994319 @default.
- W2897717481 cites W2146063036 @default.
- W2897717481 cites W2306626597 @default.
- W2897717481 cites W2474297190 @default.
- W2897717481 cites W2510975257 @default.
- W2897717481 cites W4250981202 @default.
- W2897717481 doi "https://doi.org/10.1007/978-3-319-97481-1_13" @default.
- W2897717481 hasPublicationYear "2018" @default.
- W2897717481 type Work @default.
- W2897717481 sameAs 2897717481 @default.
- W2897717481 citedByCount "2" @default.
- W2897717481 countsByYear W28977174812020 @default.
- W2897717481 crossrefType "book-chapter" @default.
- W2897717481 hasAuthorship W2897717481A5002377796 @default.
- W2897717481 hasAuthorship W2897717481A5018046405 @default.
- W2897717481 hasAuthorship W2897717481A5055371919 @default.
- W2897717481 hasConcept C104317675 @default.
- W2897717481 hasConcept C111919701 @default.
- W2897717481 hasConcept C11413529 @default.
- W2897717481 hasConcept C115961682 @default.
- W2897717481 hasConcept C121684516 @default.
- W2897717481 hasConcept C138101251 @default.
- W2897717481 hasConcept C145108525 @default.
- W2897717481 hasConcept C150552126 @default.
- W2897717481 hasConcept C154945302 @default.
- W2897717481 hasConcept C172430144 @default.
- W2897717481 hasConcept C173608175 @default.
- W2897717481 hasConcept C21442007 @default.
- W2897717481 hasConcept C2778119891 @default.
- W2897717481 hasConcept C2781172179 @default.
- W2897717481 hasConcept C41008148 @default.
- W2897717481 hasConcept C459310 @default.
- W2897717481 hasConcept C50630238 @default.
- W2897717481 hasConcept C61483411 @default.
- W2897717481 hasConcept C68339613 @default.
- W2897717481 hasConcept C78766204 @default.
- W2897717481 hasConcept C9417928 @default.
- W2897717481 hasConceptScore W2897717481C104317675 @default.
- W2897717481 hasConceptScore W2897717481C111919701 @default.
- W2897717481 hasConceptScore W2897717481C11413529 @default.
- W2897717481 hasConceptScore W2897717481C115961682 @default.
- W2897717481 hasConceptScore W2897717481C121684516 @default.
- W2897717481 hasConceptScore W2897717481C138101251 @default.
- W2897717481 hasConceptScore W2897717481C145108525 @default.
- W2897717481 hasConceptScore W2897717481C150552126 @default.
- W2897717481 hasConceptScore W2897717481C154945302 @default.
- W2897717481 hasConceptScore W2897717481C172430144 @default.
- W2897717481 hasConceptScore W2897717481C173608175 @default.
- W2897717481 hasConceptScore W2897717481C21442007 @default.
- W2897717481 hasConceptScore W2897717481C2778119891 @default.
- W2897717481 hasConceptScore W2897717481C2781172179 @default.
- W2897717481 hasConceptScore W2897717481C41008148 @default.
- W2897717481 hasConceptScore W2897717481C459310 @default.
- W2897717481 hasConceptScore W2897717481C50630238 @default.
- W2897717481 hasConceptScore W2897717481C61483411 @default.
- W2897717481 hasConceptScore W2897717481C68339613 @default.
- W2897717481 hasConceptScore W2897717481C78766204 @default.
- W2897717481 hasConceptScore W2897717481C9417928 @default.
- W2897717481 hasLocation W28977174811 @default.
- W2897717481 hasOpenAccess W2897717481 @default.
- W2897717481 hasPrimaryLocation W28977174811 @default.
- W2897717481 hasRelatedWork W1507301366 @default.
- W2897717481 hasRelatedWork W2057774067 @default.
- W2897717481 hasRelatedWork W2074226157 @default.
- W2897717481 hasRelatedWork W2170268965 @default.
- W2897717481 hasRelatedWork W2613115449 @default.
- W2897717481 hasRelatedWork W2614685449 @default.
- W2897717481 hasRelatedWork W2998169068 @default.
- W2897717481 hasRelatedWork W3170387719 @default.
- W2897717481 hasRelatedWork W4312275919 @default.
- W2897717481 hasRelatedWork W4386352405 @default.
- W2897717481 isParatext "false" @default.
- W2897717481 isRetracted "false" @default.
- W2897717481 magId "2897717481" @default.
- W2897717481 workType "book-chapter" @default.