Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897722020> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2897722020 endingPage "61685" @default.
- W2897722020 startingPage "61677" @default.
- W2897722020 abstract "Google Colaboratory (also known as Colab) is a cloud service based on Jupyter Notebooks for disseminating machine learning education and research. It provides a runtime fully configured for deep learning and free-of-charge access to a robust GPU. This paper presents a detailed analysis of Colaboratory regarding hardware resources, performance, and limitations. This analysis is performed through the use of Colaboratory for accelerating deep learning for computer vision and other GPU-centric applications. The chosen test-cases are a parallel tree-based combinatorial search and two computer vision applications: object detection/classification and object localization/segmentation. The hardware under the accelerated runtime is compared with a mainstream workstation and a robust Linux server equipped with 20 physical cores. Results show that the performance reached using this cloud service is equivalent to the performance of the dedicated testbeds, given similar resources. Thus, this service can be effectively exploited to accelerate not only deep learning but also other classes of GPU-centric applications. For instance, it is faster to train a CNN on Colaboratory’s accelerated runtime than using 20 physical cores of a Linux server. The performance of the GPU made available by Colaboratory may be enough for several profiles of researchers and students. However, these free-of-charge hardware resources are far from enough to solve demanding real-world problems and are not scalable. The most significant limitation found is the lack of CPU cores. Finally, several strengths and limitations of this cloud service are discussed, which might be useful for helping potential users." @default.
- W2897722020 created "2018-10-26" @default.
- W2897722020 creator A5013456795 @default.
- W2897722020 creator A5027728068 @default.
- W2897722020 creator A5033076846 @default.
- W2897722020 creator A5045093520 @default.
- W2897722020 creator A5046359084 @default.
- W2897722020 creator A5057042408 @default.
- W2897722020 date "2018-01-01" @default.
- W2897722020 modified "2023-10-16" @default.
- W2897722020 title "Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications" @default.
- W2897722020 cites W2010644199 @default.
- W2897722020 cites W2061939373 @default.
- W2897722020 cites W2100618668 @default.
- W2897722020 cites W2112796928 @default.
- W2897722020 cites W2141782735 @default.
- W2897722020 cites W2148802605 @default.
- W2897722020 cites W2163349370 @default.
- W2897722020 cites W2580440899 @default.
- W2897722020 cites W2586433286 @default.
- W2897722020 cites W2592929672 @default.
- W2897722020 cites W2740279402 @default.
- W2897722020 cites W2768826296 @default.
- W2897722020 cites W2772198268 @default.
- W2897722020 cites W2919115771 @default.
- W2897722020 cites W2963150697 @default.
- W2897722020 doi "https://doi.org/10.1109/access.2018.2874767" @default.
- W2897722020 hasPublicationYear "2018" @default.
- W2897722020 type Work @default.
- W2897722020 sameAs 2897722020 @default.
- W2897722020 citedByCount "311" @default.
- W2897722020 countsByYear W28977220202019 @default.
- W2897722020 countsByYear W28977220202020 @default.
- W2897722020 countsByYear W28977220202021 @default.
- W2897722020 countsByYear W28977220202022 @default.
- W2897722020 countsByYear W28977220202023 @default.
- W2897722020 crossrefType "journal-article" @default.
- W2897722020 hasAuthorship W2897722020A5013456795 @default.
- W2897722020 hasAuthorship W2897722020A5027728068 @default.
- W2897722020 hasAuthorship W2897722020A5033076846 @default.
- W2897722020 hasAuthorship W2897722020A5045093520 @default.
- W2897722020 hasAuthorship W2897722020A5046359084 @default.
- W2897722020 hasAuthorship W2897722020A5057042408 @default.
- W2897722020 hasBestOaLocation W28977220201 @default.
- W2897722020 hasConcept C154945302 @default.
- W2897722020 hasConcept C41008148 @default.
- W2897722020 hasConceptScore W2897722020C154945302 @default.
- W2897722020 hasConceptScore W2897722020C41008148 @default.
- W2897722020 hasFunder F4320322847 @default.
- W2897722020 hasLocation W28977220201 @default.
- W2897722020 hasOpenAccess W2897722020 @default.
- W2897722020 hasPrimaryLocation W28977220201 @default.
- W2897722020 hasRelatedWork W2096946506 @default.
- W2897722020 hasRelatedWork W2350741829 @default.
- W2897722020 hasRelatedWork W2358668433 @default.
- W2897722020 hasRelatedWork W2376932109 @default.
- W2897722020 hasRelatedWork W2382290278 @default.
- W2897722020 hasRelatedWork W2390279801 @default.
- W2897722020 hasRelatedWork W2748952813 @default.
- W2897722020 hasRelatedWork W2899084033 @default.
- W2897722020 hasRelatedWork W3004735627 @default.
- W2897722020 hasRelatedWork W3107474891 @default.
- W2897722020 hasVolume "6" @default.
- W2897722020 isParatext "false" @default.
- W2897722020 isRetracted "false" @default.
- W2897722020 magId "2897722020" @default.
- W2897722020 workType "article" @default.