Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897724053> ?p ?o ?g. }
- W2897724053 abstract "Scene classification is a hot research topic in the geoscience and remote sensing (RS) community. Currently, the investigations conducted in RS domain mainly use single source data (e.g. multispectral imagery (MSI), hyperspectral imagery (HSI), or light detection and ranging (LiDAR), etc.). However, one of the RS data aforementioned merely provides one certain perspective of the complex scenes while the multisource data fusion can provide complementary and robust knowledge about the objects of interest. We aim at fusing the spectral– spatial information of the HSI and the spatial-elevation information of LiDAR data for scene classification. In this work, the densely connected convolutional neural network (DensNet), which connects all preceding layers to later layers in feed-forword manner, is employed to effectively extract and reuse heterogeneous features from HSI and LiDAR data. More specifically, a novel two-stream DensNet architecture is proposed, which builds an identical but separated DensNet stream for each data respectively. Then one of stream is utilized to extract the spectral-spatial features from HSI, the other is exploited to extract the spatial-elevation features of LiDAR data. Subsequently, the spectral–spatial–elevation features extracted in two streams are deeply fused within the fusion network which consists of two fully-connected layers for the final classification. Experimental results conducted on widely-used benchmark datasets show that the proposed architecture provides competitive performance in comparison with the state-of-the-art methods." @default.
- W2897724053 created "2018-10-26" @default.
- W2897724053 creator A5004856767 @default.
- W2897724053 creator A5011577651 @default.
- W2897724053 creator A5040996310 @default.
- W2897724053 creator A5043336869 @default.
- W2897724053 creator A5043812462 @default.
- W2897724053 date "2018-10-09" @default.
- W2897724053 modified "2023-10-16" @default.
- W2897724053 title "Scene classification of multisource remote sensing data with two-stream densely connected convolutional neural network" @default.
- W2897724053 cites W1497089125 @default.
- W2897724053 cites W1498436455 @default.
- W2897724053 cites W1972562196 @default.
- W2897724053 cites W1973644502 @default.
- W2897724053 cites W1976416886 @default.
- W2897724053 cites W1997478538 @default.
- W2897724053 cites W2003022533 @default.
- W2897724053 cites W2029316659 @default.
- W2897724053 cites W2039067795 @default.
- W2897724053 cites W2045757377 @default.
- W2897724053 cites W2063907334 @default.
- W2897724053 cites W2084502283 @default.
- W2897724053 cites W2084546104 @default.
- W2897724053 cites W2090424610 @default.
- W2897724053 cites W2098676252 @default.
- W2897724053 cites W2104603799 @default.
- W2897724053 cites W2112803241 @default.
- W2897724053 cites W2132918507 @default.
- W2897724053 cites W2137969602 @default.
- W2897724053 cites W2145862305 @default.
- W2897724053 cites W2153599225 @default.
- W2897724053 cites W2156808278 @default.
- W2897724053 cites W2157026765 @default.
- W2897724053 cites W2161772257 @default.
- W2897724053 cites W2163922914 @default.
- W2897724053 cites W2164777277 @default.
- W2897724053 cites W2165796970 @default.
- W2897724053 cites W2248723555 @default.
- W2897724053 cites W2252928335 @default.
- W2897724053 cites W2296450878 @default.
- W2897724053 cites W2538244214 @default.
- W2897724053 cites W2565258258 @default.
- W2897724053 cites W2588561483 @default.
- W2897724053 cites W2604086375 @default.
- W2897724053 cites W2623518586 @default.
- W2897724053 cites W2751289896 @default.
- W2897724053 cites W2765739551 @default.
- W2897724053 cites W2782522152 @default.
- W2897724053 cites W2919115771 @default.
- W2897724053 doi "https://doi.org/10.1117/12.2501846" @default.
- W2897724053 hasPublicationYear "2018" @default.
- W2897724053 type Work @default.
- W2897724053 sameAs 2897724053 @default.
- W2897724053 citedByCount "1" @default.
- W2897724053 countsByYear W28977240532020 @default.
- W2897724053 crossrefType "proceedings-article" @default.
- W2897724053 hasAuthorship W2897724053A5004856767 @default.
- W2897724053 hasAuthorship W2897724053A5011577651 @default.
- W2897724053 hasAuthorship W2897724053A5040996310 @default.
- W2897724053 hasAuthorship W2897724053A5043336869 @default.
- W2897724053 hasAuthorship W2897724053A5043812462 @default.
- W2897724053 hasConcept C115051666 @default.
- W2897724053 hasConcept C115961682 @default.
- W2897724053 hasConcept C12267149 @default.
- W2897724053 hasConcept C153180895 @default.
- W2897724053 hasConcept C154945302 @default.
- W2897724053 hasConcept C159078339 @default.
- W2897724053 hasConcept C159620131 @default.
- W2897724053 hasConcept C173163844 @default.
- W2897724053 hasConcept C185798385 @default.
- W2897724053 hasConcept C205649164 @default.
- W2897724053 hasConcept C2524010 @default.
- W2897724053 hasConcept C33923547 @default.
- W2897724053 hasConcept C33954974 @default.
- W2897724053 hasConcept C37054046 @default.
- W2897724053 hasConcept C41008148 @default.
- W2897724053 hasConcept C51399673 @default.
- W2897724053 hasConcept C58640448 @default.
- W2897724053 hasConcept C62649853 @default.
- W2897724053 hasConcept C75294576 @default.
- W2897724053 hasConcept C76155785 @default.
- W2897724053 hasConcept C81363708 @default.
- W2897724053 hasConceptScore W2897724053C115051666 @default.
- W2897724053 hasConceptScore W2897724053C115961682 @default.
- W2897724053 hasConceptScore W2897724053C12267149 @default.
- W2897724053 hasConceptScore W2897724053C153180895 @default.
- W2897724053 hasConceptScore W2897724053C154945302 @default.
- W2897724053 hasConceptScore W2897724053C159078339 @default.
- W2897724053 hasConceptScore W2897724053C159620131 @default.
- W2897724053 hasConceptScore W2897724053C173163844 @default.
- W2897724053 hasConceptScore W2897724053C185798385 @default.
- W2897724053 hasConceptScore W2897724053C205649164 @default.
- W2897724053 hasConceptScore W2897724053C2524010 @default.
- W2897724053 hasConceptScore W2897724053C33923547 @default.
- W2897724053 hasConceptScore W2897724053C33954974 @default.
- W2897724053 hasConceptScore W2897724053C37054046 @default.
- W2897724053 hasConceptScore W2897724053C41008148 @default.
- W2897724053 hasConceptScore W2897724053C51399673 @default.
- W2897724053 hasConceptScore W2897724053C58640448 @default.
- W2897724053 hasConceptScore W2897724053C62649853 @default.