Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897734749> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2897734749 abstract "Photometric redshifts (photo-z's) are vital for the success of current and forthcoming cosmological galaxy surveys. This work focuses on three different approaches to enhance photo-z's. Firstly, we study the extent to which galaxy morphology improves photo-z's. Using artificial neural networks, we compare the performances of several morphological parameters and find that galaxy size and surface brightness bring about the most improvement to photo-z's in bright samples. When multiple morphological parameters are used, the improvement in scatter reaches as high as 12% for the Main Galaxy Sample (MGS) of the Sloan Digital Sky Survey (SDSS). We also find that the improvement becomes significant under suboptimal conditions: when surveys have limited numbers of bands, low quality photometry, or an imperfect star-galaxy separator. Next we study aspects of photo-z probability density functions (PDFs) and the resulting redshift distributions of galaxy samples in the context of the Canada-France-Hawaii Telescope Stripe-82 (CS82) Survey. We discover that, while galaxy morphology brings marginal improvement to both, we are able to produce accurate redshift distributions using a single photometric band and multiple galaxy morphological parameters, and apply this to the CS82 survey. As part of the photo-z Working Group of the Large Synoptic Survey Telescope Dark Energy Science Collaboration (LSST-DESC), we use several metrics to assess the performances of two state-of-the-art photo-z codes, ANNz2 and Delight, and concluded that the photo-z's produced by both are close to the standard for the current photo-z requirements of LSST. Finally, we explore the performances of multiple photo-z codes on narrowband surveys. Using simulated and real data from the 40-narrowband Physics of the Accelerating Universe (PAU) Survey, we find that the hybrid spectral template-machine learning code Delight outperforms monolithic machine learning as well as template codes. Using the large suite of spectral templates and well-calibrated additional broadband fluxes, we are able to produce competitive photo-z's close to the nominal PAU requirement at 40% quality cut. We believe these method would be useful for the next generation of photometric surveys, like Euclid and LSST." @default.
- W2897734749 created "2018-10-26" @default.
- W2897734749 creator A5043419337 @default.
- W2897734749 date "2018-09-28" @default.
- W2897734749 modified "2023-09-23" @default.
- W2897734749 title "Enhancing Photometric Redshifts for the Era of Precision Cosmology" @default.
- W2897734749 hasPublicationYear "2018" @default.
- W2897734749 type Work @default.
- W2897734749 sameAs 2897734749 @default.
- W2897734749 citedByCount "0" @default.
- W2897734749 crossrefType "dissertation" @default.
- W2897734749 hasAuthorship W2897734749A5043419337 @default.
- W2897734749 hasConcept C121332964 @default.
- W2897734749 hasConcept C1276947 @default.
- W2897734749 hasConcept C150846664 @default.
- W2897734749 hasConcept C172790937 @default.
- W2897734749 hasConcept C174802034 @default.
- W2897734749 hasConcept C26405456 @default.
- W2897734749 hasConcept C2776834974 @default.
- W2897734749 hasConcept C2780848835 @default.
- W2897734749 hasConcept C2780974285 @default.
- W2897734749 hasConcept C33024259 @default.
- W2897734749 hasConcept C44870925 @default.
- W2897734749 hasConcept C68271606 @default.
- W2897734749 hasConcept C73329638 @default.
- W2897734749 hasConcept C91228026 @default.
- W2897734749 hasConcept C98444146 @default.
- W2897734749 hasConceptScore W2897734749C121332964 @default.
- W2897734749 hasConceptScore W2897734749C1276947 @default.
- W2897734749 hasConceptScore W2897734749C150846664 @default.
- W2897734749 hasConceptScore W2897734749C172790937 @default.
- W2897734749 hasConceptScore W2897734749C174802034 @default.
- W2897734749 hasConceptScore W2897734749C26405456 @default.
- W2897734749 hasConceptScore W2897734749C2776834974 @default.
- W2897734749 hasConceptScore W2897734749C2780848835 @default.
- W2897734749 hasConceptScore W2897734749C2780974285 @default.
- W2897734749 hasConceptScore W2897734749C33024259 @default.
- W2897734749 hasConceptScore W2897734749C44870925 @default.
- W2897734749 hasConceptScore W2897734749C68271606 @default.
- W2897734749 hasConceptScore W2897734749C73329638 @default.
- W2897734749 hasConceptScore W2897734749C91228026 @default.
- W2897734749 hasConceptScore W2897734749C98444146 @default.
- W2897734749 hasLocation W28977347491 @default.
- W2897734749 hasOpenAccess W2897734749 @default.
- W2897734749 hasPrimaryLocation W28977347491 @default.
- W2897734749 hasRelatedWork W1516039273 @default.
- W2897734749 hasRelatedWork W1581330834 @default.
- W2897734749 hasRelatedWork W1671178062 @default.
- W2897734749 hasRelatedWork W2074200827 @default.
- W2897734749 hasRelatedWork W2738047492 @default.
- W2897734749 hasRelatedWork W2757217085 @default.
- W2897734749 hasRelatedWork W2915716442 @default.
- W2897734749 hasRelatedWork W2981298580 @default.
- W2897734749 hasRelatedWork W2984556767 @default.
- W2897734749 hasRelatedWork W3102209111 @default.
- W2897734749 hasRelatedWork W3103359881 @default.
- W2897734749 hasRelatedWork W3105920741 @default.
- W2897734749 hasRelatedWork W3119676241 @default.
- W2897734749 hasRelatedWork W3121414964 @default.
- W2897734749 hasRelatedWork W3123643225 @default.
- W2897734749 hasRelatedWork W3159997631 @default.
- W2897734749 hasRelatedWork W3162082109 @default.
- W2897734749 hasRelatedWork W3195711614 @default.
- W2897734749 hasRelatedWork W3196911455 @default.
- W2897734749 isParatext "false" @default.
- W2897734749 isRetracted "false" @default.
- W2897734749 magId "2897734749" @default.
- W2897734749 workType "dissertation" @default.