Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897737778> ?p ?o ?g. }
- W2897737778 abstract "Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial super-hub Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting." @default.
- W2897737778 created "2018-10-26" @default.
- W2897737778 creator A5010539283 @default.
- W2897737778 creator A5012214159 @default.
- W2897737778 creator A5019906604 @default.
- W2897737778 creator A5020872201 @default.
- W2897737778 creator A5021039269 @default.
- W2897737778 creator A5021817535 @default.
- W2897737778 creator A5024017505 @default.
- W2897737778 creator A5026292295 @default.
- W2897737778 creator A5028184651 @default.
- W2897737778 creator A5030613973 @default.
- W2897737778 creator A5035979563 @default.
- W2897737778 creator A5037563041 @default.
- W2897737778 creator A5054913174 @default.
- W2897737778 creator A5063731202 @default.
- W2897737778 creator A5070800227 @default.
- W2897737778 creator A5086506266 @default.
- W2897737778 creator A5087328163 @default.
- W2897737778 date "2018-10-08" @default.
- W2897737778 modified "2023-10-18" @default.
- W2897737778 title "Axial Tubule Junctions Activate Atrial Ca2+ Release Across Species" @default.
- W2897737778 cites W1577233656 @default.
- W2897737778 cites W1592793124 @default.
- W2897737778 cites W1838570785 @default.
- W2897737778 cites W1966140207 @default.
- W2897737778 cites W1969615011 @default.
- W2897737778 cites W1970185402 @default.
- W2897737778 cites W1973841770 @default.
- W2897737778 cites W1978041489 @default.
- W2897737778 cites W1986683817 @default.
- W2897737778 cites W1988470888 @default.
- W2897737778 cites W1996024251 @default.
- W2897737778 cites W1998203294 @default.
- W2897737778 cites W1998399969 @default.
- W2897737778 cites W2006623752 @default.
- W2897737778 cites W2017940963 @default.
- W2897737778 cites W2021597262 @default.
- W2897737778 cites W2024497977 @default.
- W2897737778 cites W2030727312 @default.
- W2897737778 cites W2033627292 @default.
- W2897737778 cites W2035779164 @default.
- W2897737778 cites W2047259287 @default.
- W2897737778 cites W2048777704 @default.
- W2897737778 cites W2050258520 @default.
- W2897737778 cites W2052400036 @default.
- W2897737778 cites W2055235191 @default.
- W2897737778 cites W2057934269 @default.
- W2897737778 cites W2062684112 @default.
- W2897737778 cites W2065462886 @default.
- W2897737778 cites W2078671382 @default.
- W2897737778 cites W2082854034 @default.
- W2897737778 cites W2084515554 @default.
- W2897737778 cites W2087974663 @default.
- W2897737778 cites W2088248586 @default.
- W2897737778 cites W2090947749 @default.
- W2897737778 cites W2092296126 @default.
- W2897737778 cites W2092980394 @default.
- W2897737778 cites W2095926980 @default.
- W2897737778 cites W2096204354 @default.
- W2897737778 cites W2099493810 @default.
- W2897737778 cites W2100362875 @default.
- W2897737778 cites W2101652962 @default.
- W2897737778 cites W2102311103 @default.
- W2897737778 cites W2103825195 @default.
- W2897737778 cites W2108406026 @default.
- W2897737778 cites W2109665703 @default.
- W2897737778 cites W2111773661 @default.
- W2897737778 cites W2113741117 @default.
- W2897737778 cites W2116597447 @default.
- W2897737778 cites W2117891321 @default.
- W2897737778 cites W2117948193 @default.
- W2897737778 cites W2121936687 @default.
- W2897737778 cites W2129495353 @default.
- W2897737778 cites W2135644575 @default.
- W2897737778 cites W2136309000 @default.
- W2897737778 cites W2139245232 @default.
- W2897737778 cites W2141260882 @default.
- W2897737778 cites W2142098297 @default.
- W2897737778 cites W2155698285 @default.
- W2897737778 cites W2174459583 @default.
- W2897737778 cites W2210154426 @default.
- W2897737778 cites W2221427990 @default.
- W2897737778 cites W2251733405 @default.
- W2897737778 cites W2262354220 @default.
- W2897737778 cites W2334186356 @default.
- W2897737778 cites W2409838175 @default.
- W2897737778 cites W2519910568 @default.
- W2897737778 cites W2566241028 @default.
- W2897737778 cites W2602424569 @default.
- W2897737778 cites W2611027081 @default.
- W2897737778 cites W2615372385 @default.
- W2897737778 cites W2739459547 @default.
- W2897737778 cites W2740775849 @default.
- W2897737778 cites W2783921485 @default.
- W2897737778 cites W3023891555 @default.
- W2897737778 doi "https://doi.org/10.3389/fphys.2018.01227" @default.
- W2897737778 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6187065" @default.
- W2897737778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30349482" @default.
- W2897737778 hasPublicationYear "2018" @default.