Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897738539> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2897738539 endingPage "392" @default.
- W2897738539 startingPage "383" @default.
- W2897738539 abstract "Accurate prediction of future values of time series data is crucial for strategic decision making such as inventory management, budget planning, customer relationship management, marketing promotion, and efficient allocation of resources. However, time series prediction can be very challenging especially when there are elements of uncertainty including natural disaster, change in government policies and weather condition. In this research, four different multilayer perceptron (MLP) artificial neural networks have been discussed and compared with Autoregressive Integrated Moving Average (ARIMA) for this task. The models are evaluated using two statistical performance evaluation measures, Root Mean Squared Error (RMSE) and coefficient of determination (R2). The experimental result shows that a 4-layer MLP architecture using the tanh activation function in each of the hidden layer and a linear function in the output layer has the lowest prediction error and the highest coefficient of determination among the configured multilayer perceptron neural networks. In addition, comparative analysis of performance result reveals that the multilayer perceptron neural network MLP has a lower prediction error than the ARIMA model." @default.
- W2897738539 created "2018-10-26" @default.
- W2897738539 creator A5034045173 @default.
- W2897738539 creator A5078807730 @default.
- W2897738539 date "2018-01-01" @default.
- W2897738539 modified "2023-10-18" @default.
- W2897738539 title "Predicting the Future with Artificial Neural Network" @default.
- W2897738539 cites W1498436455 @default.
- W2897738539 cites W1980933792 @default.
- W2897738539 cites W1989130706 @default.
- W2897738539 cites W2059804518 @default.
- W2897738539 cites W2117014758 @default.
- W2897738539 cites W385004530 @default.
- W2897738539 doi "https://doi.org/10.1016/j.procs.2018.10.300" @default.
- W2897738539 hasPublicationYear "2018" @default.
- W2897738539 type Work @default.
- W2897738539 sameAs 2897738539 @default.
- W2897738539 citedByCount "25" @default.
- W2897738539 countsByYear W28977385392019 @default.
- W2897738539 countsByYear W28977385392020 @default.
- W2897738539 countsByYear W28977385392021 @default.
- W2897738539 countsByYear W28977385392022 @default.
- W2897738539 countsByYear W28977385392023 @default.
- W2897738539 crossrefType "journal-article" @default.
- W2897738539 hasAuthorship W2897738539A5034045173 @default.
- W2897738539 hasAuthorship W2897738539A5078807730 @default.
- W2897738539 hasBestOaLocation W28977385391 @default.
- W2897738539 hasConcept C105795698 @default.
- W2897738539 hasConcept C119857082 @default.
- W2897738539 hasConcept C124101348 @default.
- W2897738539 hasConcept C133710760 @default.
- W2897738539 hasConcept C134306372 @default.
- W2897738539 hasConcept C139945424 @default.
- W2897738539 hasConcept C14036430 @default.
- W2897738539 hasConcept C151406439 @default.
- W2897738539 hasConcept C154945302 @default.
- W2897738539 hasConcept C179717631 @default.
- W2897738539 hasConcept C24338571 @default.
- W2897738539 hasConcept C31972630 @default.
- W2897738539 hasConcept C33923547 @default.
- W2897738539 hasConcept C38365724 @default.
- W2897738539 hasConcept C41008148 @default.
- W2897738539 hasConcept C50644808 @default.
- W2897738539 hasConcept C60908668 @default.
- W2897738539 hasConcept C78458016 @default.
- W2897738539 hasConcept C86803240 @default.
- W2897738539 hasConcept C92047909 @default.
- W2897738539 hasConceptScore W2897738539C105795698 @default.
- W2897738539 hasConceptScore W2897738539C119857082 @default.
- W2897738539 hasConceptScore W2897738539C124101348 @default.
- W2897738539 hasConceptScore W2897738539C133710760 @default.
- W2897738539 hasConceptScore W2897738539C134306372 @default.
- W2897738539 hasConceptScore W2897738539C139945424 @default.
- W2897738539 hasConceptScore W2897738539C14036430 @default.
- W2897738539 hasConceptScore W2897738539C151406439 @default.
- W2897738539 hasConceptScore W2897738539C154945302 @default.
- W2897738539 hasConceptScore W2897738539C179717631 @default.
- W2897738539 hasConceptScore W2897738539C24338571 @default.
- W2897738539 hasConceptScore W2897738539C31972630 @default.
- W2897738539 hasConceptScore W2897738539C33923547 @default.
- W2897738539 hasConceptScore W2897738539C38365724 @default.
- W2897738539 hasConceptScore W2897738539C41008148 @default.
- W2897738539 hasConceptScore W2897738539C50644808 @default.
- W2897738539 hasConceptScore W2897738539C60908668 @default.
- W2897738539 hasConceptScore W2897738539C78458016 @default.
- W2897738539 hasConceptScore W2897738539C86803240 @default.
- W2897738539 hasConceptScore W2897738539C92047909 @default.
- W2897738539 hasLocation W28977385391 @default.
- W2897738539 hasOpenAccess W2897738539 @default.
- W2897738539 hasPrimaryLocation W28977385391 @default.
- W2897738539 hasRelatedWork W2054070363 @default.
- W2897738539 hasRelatedWork W2100115021 @default.
- W2897738539 hasRelatedWork W2170079574 @default.
- W2897738539 hasRelatedWork W2182253368 @default.
- W2897738539 hasRelatedWork W2311566521 @default.
- W2897738539 hasRelatedWork W2890929759 @default.
- W2897738539 hasRelatedWork W2949044262 @default.
- W2897738539 hasRelatedWork W3005981864 @default.
- W2897738539 hasRelatedWork W3012292080 @default.
- W2897738539 hasRelatedWork W4280613937 @default.
- W2897738539 hasVolume "140" @default.
- W2897738539 isParatext "false" @default.
- W2897738539 isRetracted "false" @default.
- W2897738539 magId "2897738539" @default.
- W2897738539 workType "article" @default.