Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897760057> ?p ?o ?g. }
- W2897760057 endingPage "1537" @default.
- W2897760057 startingPage "1526" @default.
- W2897760057 abstract "Machine learning (ML) techniques, in particular supervised regression algorithms, are a promising new way to use multiple observables to predict a cluster’s mass or other key features. To investigate this approach, we use the macsis sample of simulated hydrodynamical galaxy clusters to train a variety of ML models, mimicking different data sets. We find that compared to predicting the cluster mass from the σ−M relation, the scatter in the predicted-to-true mass ratio can be reduced by a factor of 4, from 0.130 ± 0.004 dex (≃35 per cent) to 0.031 ± 0.001 dex (≃7 per cent) when using the same, interloper contaminated (out to 5r200c), spectroscopic galaxy sample. Interestingly, omitting line-of-sight galaxy velocities from the training set has no effect on the scatter when the galaxies are taken from within r200c. We also train ML models to reproduce estimated masses derived from mock X-ray and weak-lensing analyses. While the weak-lensing masses can be recovered with a similar scatter to that when training on the true mass, the hydrostatic mass suffers from significantly higher scatter of ≃0.13 dex (≃35 per cent). Training models using dark matter only simulations does not significantly increase the scatter in predicted cluster mass compared to training on simulated clusters with hydrodynamics. In summary, we find ML techniques to offer a powerful method to predict masses for large samples of clusters, a vital requirement for cosmological analysis with future surveys." @default.
- W2897760057 created "2018-10-26" @default.
- W2897760057 creator A5008702010 @default.
- W2897760057 creator A5025784151 @default.
- W2897760057 creator A5081826094 @default.
- W2897760057 date "2019-01-07" @default.
- W2897760057 modified "2023-10-16" @default.
- W2897760057 title "An application of machine learning techniques to galaxy cluster mass estimation using the MACSIS simulations" @default.
- W2897760057 cites W1975549749 @default.
- W2897760057 cites W1975983552 @default.
- W2897760057 cites W1976761078 @default.
- W2897760057 cites W1988790447 @default.
- W2897760057 cites W1990523382 @default.
- W2897760057 cites W1997254864 @default.
- W2897760057 cites W1998515260 @default.
- W2897760057 cites W2002006781 @default.
- W2897760057 cites W2009408083 @default.
- W2897760057 cites W2012848549 @default.
- W2897760057 cites W2028858565 @default.
- W2897760057 cites W2030605651 @default.
- W2897760057 cites W2036439761 @default.
- W2897760057 cites W2052391322 @default.
- W2897760057 cites W2075026317 @default.
- W2897760057 cites W2077005128 @default.
- W2897760057 cites W2077353758 @default.
- W2897760057 cites W2078665538 @default.
- W2897760057 cites W2080871773 @default.
- W2897760057 cites W2085061516 @default.
- W2897760057 cites W2087432755 @default.
- W2897760057 cites W2096245028 @default.
- W2897760057 cites W2112736043 @default.
- W2897760057 cites W2113409226 @default.
- W2897760057 cites W2117644792 @default.
- W2897760057 cites W2118601380 @default.
- W2897760057 cites W2119936234 @default.
- W2897760057 cites W2120579120 @default.
- W2897760057 cites W2130796363 @default.
- W2897760057 cites W2141968105 @default.
- W2897760057 cites W2143426320 @default.
- W2897760057 cites W2149819553 @default.
- W2897760057 cites W2153306591 @default.
- W2897760057 cites W2155309911 @default.
- W2897760057 cites W2170184648 @default.
- W2897760057 cites W2170857649 @default.
- W2897760057 cites W2245467298 @default.
- W2897760057 cites W2246040896 @default.
- W2897760057 cites W2253699394 @default.
- W2897760057 cites W2296455390 @default.
- W2897760057 cites W2309878079 @default.
- W2897760057 cites W2411527379 @default.
- W2897760057 cites W2488160177 @default.
- W2897760057 cites W2515276161 @default.
- W2897760057 cites W2604475176 @default.
- W2897760057 cites W2615792591 @default.
- W2897760057 cites W2744881690 @default.
- W2897760057 cites W2774523813 @default.
- W2897760057 cites W2891227658 @default.
- W2897760057 cites W2953228579 @default.
- W2897760057 cites W3098221464 @default.
- W2897760057 cites W3098326871 @default.
- W2897760057 cites W3100377699 @default.
- W2897760057 cites W3100414533 @default.
- W2897760057 cites W3101189659 @default.
- W2897760057 cites W3101771129 @default.
- W2897760057 cites W3101961972 @default.
- W2897760057 cites W3102051593 @default.
- W2897760057 cites W3102740242 @default.
- W2897760057 cites W3103166843 @default.
- W2897760057 cites W3103787185 @default.
- W2897760057 cites W3125319234 @default.
- W2897760057 cites W3125418888 @default.
- W2897760057 cites W3125608756 @default.
- W2897760057 cites W4234698323 @default.
- W2897760057 doi "https://doi.org/10.1093/mnras/stz039" @default.
- W2897760057 hasPublicationYear "2019" @default.
- W2897760057 type Work @default.
- W2897760057 sameAs 2897760057 @default.
- W2897760057 citedByCount "26" @default.
- W2897760057 countsByYear W28977600572019 @default.
- W2897760057 countsByYear W28977600572020 @default.
- W2897760057 countsByYear W28977600572021 @default.
- W2897760057 countsByYear W28977600572022 @default.
- W2897760057 countsByYear W28977600572023 @default.
- W2897760057 crossrefType "journal-article" @default.
- W2897760057 hasAuthorship W2897760057A5008702010 @default.
- W2897760057 hasAuthorship W2897760057A5025784151 @default.
- W2897760057 hasAuthorship W2897760057A5081826094 @default.
- W2897760057 hasBestOaLocation W28977600572 @default.
- W2897760057 hasConcept C119857082 @default.
- W2897760057 hasConcept C121332964 @default.
- W2897760057 hasConcept C1276947 @default.
- W2897760057 hasConcept C134853933 @default.
- W2897760057 hasConcept C154945302 @default.
- W2897760057 hasConcept C156055797 @default.
- W2897760057 hasConcept C159249277 @default.
- W2897760057 hasConcept C164866538 @default.
- W2897760057 hasConcept C190670322 @default.
- W2897760057 hasConcept C198531522 @default.