Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897768203> ?p ?o ?g. }
- W2897768203 endingPage "720" @default.
- W2897768203 startingPage "704" @default.
- W2897768203 abstract "The compression index is one of the important geotechnical parameters, essential for the structural design. Since the determination of the compression index based on oedometer tests is relatively expensive and time-consuming, different authors have proposed for its estimation models using regression analysis and artificial neuron networks. However, they have ignored several parameters that could have increased the predictive capability of models. Other studies have concluded that genetic programming could have yielded better results. Unfortunately, no compression index models or effective comparisons of different methods have been published. The aim of this study is to propose a novel approach for estimating the compression index more accurately. To test the approach, a comparison study using K-fold cross-validation technique was conducted utilizing several models of multilayer neural networks, genetic programming, and multiple regression analysis. These models have been applied to 373 oedometer test samples to predict the compression index from soil physical parameters. The results indicate that the neural network with two hidden layers (7-14-4-1) provides the most appropriate prediction, compared with other models and the formulae suggested by previous studies. Based on these findings, this study proposed a MATLAB script for efficiently estimating the compression index in the future studies." @default.
- W2897768203 created "2018-10-26" @default.
- W2897768203 creator A5005569656 @default.
- W2897768203 creator A5011712226 @default.
- W2897768203 creator A5022089324 @default.
- W2897768203 creator A5054289356 @default.
- W2897768203 creator A5081079387 @default.
- W2897768203 creator A5089270143 @default.
- W2897768203 date "2018-10-10" @default.
- W2897768203 modified "2023-10-18" @default.
- W2897768203 title "A new approach to predict the compression index using artificial intelligence methods" @default.
- W2897768203 cites W15044778 @default.
- W2897768203 cites W1567875894 @default.
- W2897768203 cites W1968576340 @default.
- W2897768203 cites W1969246162 @default.
- W2897768203 cites W1972776563 @default.
- W2897768203 cites W1990376605 @default.
- W2897768203 cites W1994465193 @default.
- W2897768203 cites W1999338295 @default.
- W2897768203 cites W1999947307 @default.
- W2897768203 cites W2004941813 @default.
- W2897768203 cites W2004945692 @default.
- W2897768203 cites W2005591184 @default.
- W2897768203 cites W2009897462 @default.
- W2897768203 cites W2010540226 @default.
- W2897768203 cites W2014891611 @default.
- W2897768203 cites W2015071534 @default.
- W2897768203 cites W2019371222 @default.
- W2897768203 cites W2029056188 @default.
- W2897768203 cites W2030067143 @default.
- W2897768203 cites W2043755644 @default.
- W2897768203 cites W2047898003 @default.
- W2897768203 cites W2052059702 @default.
- W2897768203 cites W2057652484 @default.
- W2897768203 cites W2060032420 @default.
- W2897768203 cites W2065752636 @default.
- W2897768203 cites W2066309818 @default.
- W2897768203 cites W2072240419 @default.
- W2897768203 cites W2078015106 @default.
- W2897768203 cites W2103751922 @default.
- W2897768203 cites W2111814036 @default.
- W2897768203 cites W2111991669 @default.
- W2897768203 cites W2129537185 @default.
- W2897768203 cites W2144065316 @default.
- W2897768203 cites W2171798729 @default.
- W2897768203 cites W2259007223 @default.
- W2897768203 cites W2298098364 @default.
- W2897768203 cites W2298418860 @default.
- W2897768203 cites W2317808518 @default.
- W2897768203 cites W2319705740 @default.
- W2897768203 cites W2464769914 @default.
- W2897768203 cites W2516710318 @default.
- W2897768203 cites W2529858931 @default.
- W2897768203 cites W2534925664 @default.
- W2897768203 doi "https://doi.org/10.1080/1064119x.2018.1484533" @default.
- W2897768203 hasPublicationYear "2018" @default.
- W2897768203 type Work @default.
- W2897768203 sameAs 2897768203 @default.
- W2897768203 citedByCount "21" @default.
- W2897768203 countsByYear W28977682032019 @default.
- W2897768203 countsByYear W28977682032020 @default.
- W2897768203 countsByYear W28977682032021 @default.
- W2897768203 countsByYear W28977682032022 @default.
- W2897768203 countsByYear W28977682032023 @default.
- W2897768203 crossrefType "journal-article" @default.
- W2897768203 hasAuthorship W2897768203A5005569656 @default.
- W2897768203 hasAuthorship W2897768203A5011712226 @default.
- W2897768203 hasAuthorship W2897768203A5022089324 @default.
- W2897768203 hasAuthorship W2897768203A5054289356 @default.
- W2897768203 hasAuthorship W2897768203A5081079387 @default.
- W2897768203 hasAuthorship W2897768203A5089270143 @default.
- W2897768203 hasBestOaLocation W28977682032 @default.
- W2897768203 hasConcept C105795698 @default.
- W2897768203 hasConcept C110332635 @default.
- W2897768203 hasConcept C111919701 @default.
- W2897768203 hasConcept C119857082 @default.
- W2897768203 hasConcept C124101348 @default.
- W2897768203 hasConcept C136764020 @default.
- W2897768203 hasConcept C150700348 @default.
- W2897768203 hasConcept C152877465 @default.
- W2897768203 hasConcept C154945302 @default.
- W2897768203 hasConcept C159390177 @default.
- W2897768203 hasConcept C159750122 @default.
- W2897768203 hasConcept C159985019 @default.
- W2897768203 hasConcept C180016635 @default.
- W2897768203 hasConcept C192562407 @default.
- W2897768203 hasConcept C2777382242 @default.
- W2897768203 hasConcept C2780365114 @default.
- W2897768203 hasConcept C33923547 @default.
- W2897768203 hasConcept C39432304 @default.
- W2897768203 hasConcept C41008148 @default.
- W2897768203 hasConcept C45804977 @default.
- W2897768203 hasConcept C50644808 @default.
- W2897768203 hasConcept C83546350 @default.
- W2897768203 hasConceptScore W2897768203C105795698 @default.
- W2897768203 hasConceptScore W2897768203C110332635 @default.
- W2897768203 hasConceptScore W2897768203C111919701 @default.
- W2897768203 hasConceptScore W2897768203C119857082 @default.