Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897769196> ?p ?o ?g. }
- W2897769196 endingPage "1645" @default.
- W2897769196 startingPage "1645" @default.
- W2897769196 abstract "Background: Crown fires are often intense and fast spreading and hence can have serious impacts on soil, vegetation, and wildlife habitats. Fire managers try to prevent the initiation and spread of crown fires in forested landscapes through fuel management. The minimum fuel conditions necessary to initiate and propagate crown fires are known to be strongly influenced by four stand structural variables: surface fuel load (SFL), fuel strata gap (FSG), canopy base height (CBH), and canopy bulk density (CBD). However, there is often a lack of quantitative data about these variables, especially at the landscape scale. Methods: In this study, data from 123 sample plots established in pure, even-aged, Pinus radiata and Pinus pinaster stands in northwest Spain were analyzed. In each plot, an intensive field inventory was used to characterize surface and canopy fuels load and structure, and to estimate SFL, FSG, CBH, and CBD. Equations relating these variables to Sentinel-2A (S-2A) bands and vegetation indices were obtained using two non-parametric techniques: Random Forest (RF) and Multivariate Adaptive Regression Splines (MARS). Results: According to the goodness-of-fit statistics, RF models provided the most accurate estimates, explaining more than 12%, 37%, 47%, and 31% of the observed variability in SFL, FSG, CBH, and CBD, respectively. To evaluate the performance of the four equations considered, the observed and estimated values of the four fuel variables were used separately to predict the potential type of wildfire (surface fire, passive crown fire, or active crown fire) for each plot, considering three different burning conditions (low, moderate, and extreme). The results of the confusion matrix indicated that 79.8% of the surface fires and 93.1% of the active crown fires were correctly classified; meanwhile, the highest rate of misclassification was observed for passive crown fire, with 75.6% of the samples correctly classified. Conclusions: The results highlight that the combination of medium resolution imagery and machine learning techniques may add valuable information about surface and canopy fuel variables at large scales, whereby crown fire potential and the potential type of wildfire can be classified." @default.
- W2897769196 created "2018-10-26" @default.
- W2897769196 creator A5028111817 @default.
- W2897769196 creator A5029691807 @default.
- W2897769196 creator A5034763648 @default.
- W2897769196 creator A5037949849 @default.
- W2897769196 creator A5047314826 @default.
- W2897769196 creator A5052157609 @default.
- W2897769196 creator A5053963590 @default.
- W2897769196 creator A5061585094 @default.
- W2897769196 creator A5090606788 @default.
- W2897769196 date "2018-10-16" @default.
- W2897769196 modified "2023-10-17" @default.
- W2897769196 title "Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard" @default.
- W2897769196 cites W108444638 @default.
- W2897769196 cites W131359794 @default.
- W2897769196 cites W1413645801 @default.
- W2897769196 cites W1531419578 @default.
- W2897769196 cites W1562056318 @default.
- W2897769196 cites W1764922102 @default.
- W2897769196 cites W1964217023 @default.
- W2897769196 cites W1964985535 @default.
- W2897769196 cites W1968987485 @default.
- W2897769196 cites W1974983556 @default.
- W2897769196 cites W1990653740 @default.
- W2897769196 cites W1997631708 @default.
- W2897769196 cites W2000102737 @default.
- W2897769196 cites W2007458183 @default.
- W2897769196 cites W2009382572 @default.
- W2897769196 cites W2013183096 @default.
- W2897769196 cites W2019159669 @default.
- W2897769196 cites W2019328218 @default.
- W2897769196 cites W2022795141 @default.
- W2897769196 cites W2034085189 @default.
- W2897769196 cites W2038790471 @default.
- W2897769196 cites W2041310941 @default.
- W2897769196 cites W2054367482 @default.
- W2897769196 cites W2063155319 @default.
- W2897769196 cites W2066757235 @default.
- W2897769196 cites W2073331382 @default.
- W2897769196 cites W2075704050 @default.
- W2897769196 cites W2075933730 @default.
- W2897769196 cites W2102201073 @default.
- W2897769196 cites W2111700665 @default.
- W2897769196 cites W2113410727 @default.
- W2897769196 cites W2120672114 @default.
- W2897769196 cites W2123501637 @default.
- W2897769196 cites W2131788804 @default.
- W2897769196 cites W2137776809 @default.
- W2897769196 cites W2141915862 @default.
- W2897769196 cites W2142117100 @default.
- W2897769196 cites W2153296924 @default.
- W2897769196 cites W2153762352 @default.
- W2897769196 cites W2155261478 @default.
- W2897769196 cites W2156812474 @default.
- W2897769196 cites W2159690339 @default.
- W2897769196 cites W2160927613 @default.
- W2897769196 cites W2162344718 @default.
- W2897769196 cites W2163324173 @default.
- W2897769196 cites W2212201313 @default.
- W2897769196 cites W2273708466 @default.
- W2897769196 cites W2327053180 @default.
- W2897769196 cites W2340003253 @default.
- W2897769196 cites W2400206391 @default.
- W2897769196 cites W2466573172 @default.
- W2897769196 cites W2589181229 @default.
- W2897769196 cites W2607590775 @default.
- W2897769196 cites W2608260148 @default.
- W2897769196 cites W2611080000 @default.
- W2897769196 cites W2736640159 @default.
- W2897769196 cites W2751577842 @default.
- W2897769196 cites W2765708932 @default.
- W2897769196 cites W2768035654 @default.
- W2897769196 cites W2782220608 @default.
- W2897769196 cites W2891482458 @default.
- W2897769196 cites W2911964244 @default.
- W2897769196 cites W2969331306 @default.
- W2897769196 cites W90642262 @default.
- W2897769196 doi "https://doi.org/10.3390/rs10101645" @default.
- W2897769196 hasPublicationYear "2018" @default.
- W2897769196 type Work @default.
- W2897769196 sameAs 2897769196 @default.
- W2897769196 citedByCount "25" @default.
- W2897769196 countsByYear W28977691962019 @default.
- W2897769196 countsByYear W28977691962020 @default.
- W2897769196 countsByYear W28977691962021 @default.
- W2897769196 countsByYear W28977691962022 @default.
- W2897769196 countsByYear W28977691962023 @default.
- W2897769196 crossrefType "journal-article" @default.
- W2897769196 hasAuthorship W2897769196A5028111817 @default.
- W2897769196 hasAuthorship W2897769196A5029691807 @default.
- W2897769196 hasAuthorship W2897769196A5034763648 @default.
- W2897769196 hasAuthorship W2897769196A5037949849 @default.
- W2897769196 hasAuthorship W2897769196A5047314826 @default.
- W2897769196 hasAuthorship W2897769196A5052157609 @default.
- W2897769196 hasAuthorship W2897769196A5053963590 @default.
- W2897769196 hasAuthorship W2897769196A5061585094 @default.
- W2897769196 hasAuthorship W2897769196A5090606788 @default.