Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897770688> ?p ?o ?g. }
- W2897770688 endingPage "119" @default.
- W2897770688 startingPage "111" @default.
- W2897770688 abstract "•Kalman filtering, from machine learning, accurately predicts NTG disease trajectory. •Kalman filtering outperformed standard forecasting methods like linear regression. •Kalman filtering predicted MD within 1 dB of the actual value for >50% of patients. Purpose To determine whether a machine learning technique called Kalman filtering (KF) can accurately forecast future values of mean deviation (MD), pattern standard deviation, and intraocular pressure for patients with normal tension glaucoma (NTG). Design Development and testing of a forecasting model for glaucoma progression. Methods We parameterized and validated a KF (KF-NTG) to forecast MD, pattern standard deviation, and intraocular pressure at 24 months into the future using 263 eyes of 263 Japanese patients with NTG. We determined the proportion of patients with MD forecasts within 0.5, 1.0, and 2.5 dBs of the actual values and calculated the root mean squared error (RMSE) for each forecast. We compared KF-NTG with a previously published KF model calibrated using patients with high-tension open-angle glaucoma (KF-HTG) and to 3 conventional forecasting algorithms. Results The 263 patients with NTG had mean ± standard deviation age of 63.4 ± 10.5 years. KF-NTG forecasted MD values 24 months ahead within 0.5, 1.0, and 2.5 dBs of the actual value for 78 eyes (32.2%), 122 eyes (50.4%), and 211 eyes (87.2%), respectively. The proportion of eyes with MD values forecasted within 2.5 dB of the actual value for the KF-NTG (87.2%) were similar to KF-HTG (86.0%) and the null model (86.4%), and much better than the 2 linear regression–based models (72.7-74.0%; P < .001). When forecasting MD, KF-NTG (RMSE = 2.71) and KF-HTG (RMSE = 2.68) achieved lower RMSE than the other 3 forecasting models (RMSE = 2.81-3.90), indicating better performance. Conclusion As observed previously for patients with HTG, KF can also effectively forecast disease trajectory for many patients with NTG. To determine whether a machine learning technique called Kalman filtering (KF) can accurately forecast future values of mean deviation (MD), pattern standard deviation, and intraocular pressure for patients with normal tension glaucoma (NTG). Development and testing of a forecasting model for glaucoma progression. We parameterized and validated a KF (KF-NTG) to forecast MD, pattern standard deviation, and intraocular pressure at 24 months into the future using 263 eyes of 263 Japanese patients with NTG. We determined the proportion of patients with MD forecasts within 0.5, 1.0, and 2.5 dBs of the actual values and calculated the root mean squared error (RMSE) for each forecast. We compared KF-NTG with a previously published KF model calibrated using patients with high-tension open-angle glaucoma (KF-HTG) and to 3 conventional forecasting algorithms. The 263 patients with NTG had mean ± standard deviation age of 63.4 ± 10.5 years. KF-NTG forecasted MD values 24 months ahead within 0.5, 1.0, and 2.5 dBs of the actual value for 78 eyes (32.2%), 122 eyes (50.4%), and 211 eyes (87.2%), respectively. The proportion of eyes with MD values forecasted within 2.5 dB of the actual value for the KF-NTG (87.2%) were similar to KF-HTG (86.0%) and the null model (86.4%), and much better than the 2 linear regression–based models (72.7-74.0%; P < .001). When forecasting MD, KF-NTG (RMSE = 2.71) and KF-HTG (RMSE = 2.68) achieved lower RMSE than the other 3 forecasting models (RMSE = 2.81-3.90), indicating better performance. As observed previously for patients with HTG, KF can also effectively forecast disease trajectory for many patients with NTG." @default.
- W2897770688 created "2018-10-26" @default.
- W2897770688 creator A5036604351 @default.
- W2897770688 creator A5036842515 @default.
- W2897770688 creator A5042392325 @default.
- W2897770688 creator A5052995069 @default.
- W2897770688 creator A5056448190 @default.
- W2897770688 creator A5069690642 @default.
- W2897770688 creator A5079822409 @default.
- W2897770688 creator A5085528800 @default.
- W2897770688 creator A5086266530 @default.
- W2897770688 date "2019-03-01" @default.
- W2897770688 modified "2023-10-15" @default.
- W2897770688 title "Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma" @default.
- W2897770688 cites W1481376442 @default.
- W2897770688 cites W1578617841 @default.
- W2897770688 cites W1768004330 @default.
- W2897770688 cites W1964495738 @default.
- W2897770688 cites W1968532213 @default.
- W2897770688 cites W1970386512 @default.
- W2897770688 cites W1997934095 @default.
- W2897770688 cites W2003802701 @default.
- W2897770688 cites W2018344939 @default.
- W2897770688 cites W2024272614 @default.
- W2897770688 cites W2044729475 @default.
- W2897770688 cites W2049435989 @default.
- W2897770688 cites W2054462224 @default.
- W2897770688 cites W2063120410 @default.
- W2897770688 cites W2090561303 @default.
- W2897770688 cites W2117102490 @default.
- W2897770688 cites W2143189496 @default.
- W2897770688 cites W2155245960 @default.
- W2897770688 cites W2157856672 @default.
- W2897770688 cites W2159562751 @default.
- W2897770688 cites W2163401316 @default.
- W2897770688 cites W2345878445 @default.
- W2897770688 cites W25112218 @default.
- W2897770688 cites W2616044243 @default.
- W2897770688 cites W2619055652 @default.
- W2897770688 cites W2766261654 @default.
- W2897770688 cites W2773723025 @default.
- W2897770688 cites W4299591067 @default.
- W2897770688 doi "https://doi.org/10.1016/j.ajo.2018.10.012" @default.
- W2897770688 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6662653" @default.
- W2897770688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30336130" @default.
- W2897770688 hasPublicationYear "2019" @default.
- W2897770688 type Work @default.
- W2897770688 sameAs 2897770688 @default.
- W2897770688 citedByCount "27" @default.
- W2897770688 countsByYear W28977706882019 @default.
- W2897770688 countsByYear W28977706882020 @default.
- W2897770688 countsByYear W28977706882021 @default.
- W2897770688 countsByYear W28977706882022 @default.
- W2897770688 countsByYear W28977706882023 @default.
- W2897770688 crossrefType "journal-article" @default.
- W2897770688 hasAuthorship W2897770688A5036604351 @default.
- W2897770688 hasAuthorship W2897770688A5036842515 @default.
- W2897770688 hasAuthorship W2897770688A5042392325 @default.
- W2897770688 hasAuthorship W2897770688A5052995069 @default.
- W2897770688 hasAuthorship W2897770688A5056448190 @default.
- W2897770688 hasAuthorship W2897770688A5069690642 @default.
- W2897770688 hasAuthorship W2897770688A5079822409 @default.
- W2897770688 hasAuthorship W2897770688A5085528800 @default.
- W2897770688 hasAuthorship W2897770688A5086266530 @default.
- W2897770688 hasBestOaLocation W28977706881 @default.
- W2897770688 hasConcept C105795698 @default.
- W2897770688 hasConcept C118487528 @default.
- W2897770688 hasConcept C120934525 @default.
- W2897770688 hasConcept C139945424 @default.
- W2897770688 hasConcept C157286648 @default.
- W2897770688 hasConcept C188154048 @default.
- W2897770688 hasConcept C22679943 @default.
- W2897770688 hasConcept C2778527774 @default.
- W2897770688 hasConcept C2780179686 @default.
- W2897770688 hasConcept C2781092963 @default.
- W2897770688 hasConcept C2991803831 @default.
- W2897770688 hasConcept C33923547 @default.
- W2897770688 hasConcept C71924100 @default.
- W2897770688 hasConceptScore W2897770688C105795698 @default.
- W2897770688 hasConceptScore W2897770688C118487528 @default.
- W2897770688 hasConceptScore W2897770688C120934525 @default.
- W2897770688 hasConceptScore W2897770688C139945424 @default.
- W2897770688 hasConceptScore W2897770688C157286648 @default.
- W2897770688 hasConceptScore W2897770688C188154048 @default.
- W2897770688 hasConceptScore W2897770688C22679943 @default.
- W2897770688 hasConceptScore W2897770688C2778527774 @default.
- W2897770688 hasConceptScore W2897770688C2780179686 @default.
- W2897770688 hasConceptScore W2897770688C2781092963 @default.
- W2897770688 hasConceptScore W2897770688C2991803831 @default.
- W2897770688 hasConceptScore W2897770688C33923547 @default.
- W2897770688 hasConceptScore W2897770688C71924100 @default.
- W2897770688 hasFunder F4320306076 @default.
- W2897770688 hasFunder F4320306811 @default.
- W2897770688 hasFunder F4320309652 @default.
- W2897770688 hasFunder F4320332161 @default.
- W2897770688 hasLocation W28977706881 @default.
- W2897770688 hasLocation W28977706882 @default.
- W2897770688 hasLocation W28977706883 @default.