Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897772195> ?p ?o ?g. }
- W2897772195 endingPage "139" @default.
- W2897772195 startingPage "130" @default.
- W2897772195 abstract "The most tedious and time-consuming task in medical additive manufacturing (AM) is image segmentation. The aim of the present study was to develop and train a convolutional neural network (CNN) for bone segmentation in computed tomography (CT) scans.The CNN was trained with CT scans acquired using six different scanners. Standard tessellation language (STL) models of 20 patients who had previously undergone craniotomy and cranioplasty using additively manufactured skull implants served as gold standard models during CNN training. The CNN segmented all patient CT scans using a leave-2-out scheme. All segmented CT scans were converted into STL models and geometrically compared with the gold standard STL models.The CT scans segmented using the CNN demonstrated a large overlap with the gold standard segmentation and resulted in a mean Dice similarity coefficient of 0.92 ± 0.04. The CNN-based STL models demonstrated mean surface deviations ranging between -0.19 mm ± 0.86 mm and 1.22 mm ± 1.75 mm, when compared to the gold standard STL models. No major differences were observed between the mean deviations of the CNN-based STL models acquired using six different CT scanners.The fully-automated CNN was able to accurately segment the skull. CNNs thus offer the opportunity of removing the current prohibitive barriers of time and effort during CT image segmentation, making patient-specific AM constructs more accesible." @default.
- W2897772195 created "2018-10-26" @default.
- W2897772195 creator A5015319043 @default.
- W2897772195 creator A5015804681 @default.
- W2897772195 creator A5035413133 @default.
- W2897772195 creator A5059544055 @default.
- W2897772195 creator A5067948858 @default.
- W2897772195 creator A5090697376 @default.
- W2897772195 date "2018-12-01" @default.
- W2897772195 modified "2023-10-14" @default.
- W2897772195 title "CT image segmentation of bone for medical additive manufacturing using a convolutional neural network" @default.
- W2897772195 cites W1523493493 @default.
- W2897772195 cites W1884191083 @default.
- W2897772195 cites W1915761309 @default.
- W2897772195 cites W1978046161 @default.
- W2897772195 cites W1989171659 @default.
- W2897772195 cites W2025441619 @default.
- W2897772195 cites W2026616100 @default.
- W2897772195 cites W2037746730 @default.
- W2897772195 cites W2043704558 @default.
- W2897772195 cites W2082526668 @default.
- W2897772195 cites W2087739447 @default.
- W2897772195 cites W2118978333 @default.
- W2897772195 cites W2127074705 @default.
- W2897772195 cites W2131006320 @default.
- W2897772195 cites W2132116135 @default.
- W2897772195 cites W2148430292 @default.
- W2897772195 cites W2172062963 @default.
- W2897772195 cites W2310992461 @default.
- W2897772195 cites W2345010043 @default.
- W2897772195 cites W2529203629 @default.
- W2897772195 cites W2573089705 @default.
- W2897772195 cites W2588358834 @default.
- W2897772195 cites W2589647984 @default.
- W2897772195 cites W2726102591 @default.
- W2897772195 cites W2737447746 @default.
- W2897772195 cites W2766463156 @default.
- W2897772195 cites W2776265614 @default.
- W2897772195 cites W2791822495 @default.
- W2897772195 cites W3104258355 @default.
- W2897772195 cites W377632744 @default.
- W2897772195 doi "https://doi.org/10.1016/j.compbiomed.2018.10.012" @default.
- W2897772195 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30366309" @default.
- W2897772195 hasPublicationYear "2018" @default.
- W2897772195 type Work @default.
- W2897772195 sameAs 2897772195 @default.
- W2897772195 citedByCount "92" @default.
- W2897772195 countsByYear W28977721952019 @default.
- W2897772195 countsByYear W28977721952020 @default.
- W2897772195 countsByYear W28977721952021 @default.
- W2897772195 countsByYear W28977721952022 @default.
- W2897772195 countsByYear W28977721952023 @default.
- W2897772195 crossrefType "journal-article" @default.
- W2897772195 hasAuthorship W2897772195A5015319043 @default.
- W2897772195 hasAuthorship W2897772195A5015804681 @default.
- W2897772195 hasAuthorship W2897772195A5035413133 @default.
- W2897772195 hasAuthorship W2897772195A5059544055 @default.
- W2897772195 hasAuthorship W2897772195A5067948858 @default.
- W2897772195 hasAuthorship W2897772195A5090697376 @default.
- W2897772195 hasBestOaLocation W28977721952 @default.
- W2897772195 hasConcept C103278499 @default.
- W2897772195 hasConcept C105795698 @default.
- W2897772195 hasConcept C115961682 @default.
- W2897772195 hasConcept C126838900 @default.
- W2897772195 hasConcept C153180895 @default.
- W2897772195 hasConcept C154945302 @default.
- W2897772195 hasConcept C22679943 @default.
- W2897772195 hasConcept C31972630 @default.
- W2897772195 hasConcept C33923547 @default.
- W2897772195 hasConcept C40993552 @default.
- W2897772195 hasConcept C41008148 @default.
- W2897772195 hasConcept C71924100 @default.
- W2897772195 hasConcept C81363708 @default.
- W2897772195 hasConcept C89600930 @default.
- W2897772195 hasConceptScore W2897772195C103278499 @default.
- W2897772195 hasConceptScore W2897772195C105795698 @default.
- W2897772195 hasConceptScore W2897772195C115961682 @default.
- W2897772195 hasConceptScore W2897772195C126838900 @default.
- W2897772195 hasConceptScore W2897772195C153180895 @default.
- W2897772195 hasConceptScore W2897772195C154945302 @default.
- W2897772195 hasConceptScore W2897772195C22679943 @default.
- W2897772195 hasConceptScore W2897772195C31972630 @default.
- W2897772195 hasConceptScore W2897772195C33923547 @default.
- W2897772195 hasConceptScore W2897772195C40993552 @default.
- W2897772195 hasConceptScore W2897772195C41008148 @default.
- W2897772195 hasConceptScore W2897772195C71924100 @default.
- W2897772195 hasConceptScore W2897772195C81363708 @default.
- W2897772195 hasConceptScore W2897772195C89600930 @default.
- W2897772195 hasFunder F4320314239 @default.
- W2897772195 hasFunder F4320321800 @default.
- W2897772195 hasLocation W28977721951 @default.
- W2897772195 hasLocation W28977721952 @default.
- W2897772195 hasLocation W28977721953 @default.
- W2897772195 hasOpenAccess W2897772195 @default.
- W2897772195 hasPrimaryLocation W28977721951 @default.
- W2897772195 hasRelatedWork W1669643531 @default.
- W2897772195 hasRelatedWork W2005437358 @default.
- W2897772195 hasRelatedWork W2008656436 @default.