Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897779003> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2897779003 abstract "Efficient implementations of range and nearest neighbor queries are critical in many large multimedia applications. Locality Sensitive Hashing (LSH) is a popular technique for performing approximate searches in high-dimensional multimedia, such as image or sensory data. Often times, these multimedia data are represented as a collection of important spatio-temporal features which are extracted by using localized feature extraction algorithms. When a user wants to search for a given entity (object, event, or observation), individual similarity search queries, which collectively form a set query, need to be performed on the features that represent the particular search entity. Existing LSH techniques require that users provide an accuracy guarantee for each query in the set query, instead of an overall guarantee for the entire set query, which can lead to misses or wasteful work. We propose a novel index structure, Point Set LSH (PSLSH), which is able to execute a similarity search for a given set of search points in the high-dimensional space with a user-provided guarantee for the entire set query. Experimental evaluation shows significant gains in efficiency and accuracy trade-offs for executing set queries in high-dimensional spaces." @default.
- W2897779003 created "2018-10-26" @default.
- W2897779003 creator A5003070145 @default.
- W2897779003 creator A5061553698 @default.
- W2897779003 date "2018-10-17" @default.
- W2897779003 modified "2023-09-23" @default.
- W2897779003 title "PSLSH" @default.
- W2897779003 cites W1677409904 @default.
- W2897779003 cites W185144071 @default.
- W2897779003 cites W1975410281 @default.
- W2897779003 cites W2017851434 @default.
- W2897779003 cites W2027537828 @default.
- W2897779003 cites W2037046020 @default.
- W2897779003 cites W2090836891 @default.
- W2897779003 cites W2107427524 @default.
- W2897779003 cites W2142040641 @default.
- W2897779003 cites W2144265691 @default.
- W2897779003 cites W2147226516 @default.
- W2897779003 cites W2147717514 @default.
- W2897779003 cites W2148781362 @default.
- W2897779003 cites W2151103935 @default.
- W2897779003 cites W2162006472 @default.
- W2897779003 cites W2294518132 @default.
- W2897779003 cites W2441967103 @default.
- W2897779003 cites W642889137 @default.
- W2897779003 doi "https://doi.org/10.1145/3269206.3271691" @default.
- W2897779003 hasPublicationYear "2018" @default.
- W2897779003 type Work @default.
- W2897779003 sameAs 2897779003 @default.
- W2897779003 citedByCount "2" @default.
- W2897779003 countsByYear W28977790032020 @default.
- W2897779003 crossrefType "proceedings-article" @default.
- W2897779003 hasAuthorship W2897779003A5003070145 @default.
- W2897779003 hasAuthorship W2897779003A5061553698 @default.
- W2897779003 hasBestOaLocation W28977790031 @default.
- W2897779003 hasConcept C41008148 @default.
- W2897779003 hasConceptScore W2897779003C41008148 @default.
- W2897779003 hasFunder F4320306076 @default.
- W2897779003 hasFunder F4320333069 @default.
- W2897779003 hasLocation W28977790031 @default.
- W2897779003 hasOpenAccess W2897779003 @default.
- W2897779003 hasPrimaryLocation W28977790031 @default.
- W2897779003 hasRelatedWork W2093578348 @default.
- W2897779003 hasRelatedWork W2130043461 @default.
- W2897779003 hasRelatedWork W2350741829 @default.
- W2897779003 hasRelatedWork W2358668433 @default.
- W2897779003 hasRelatedWork W2376932109 @default.
- W2897779003 hasRelatedWork W2382290278 @default.
- W2897779003 hasRelatedWork W2390279801 @default.
- W2897779003 hasRelatedWork W2748952813 @default.
- W2897779003 hasRelatedWork W2899084033 @default.
- W2897779003 hasRelatedWork W3004735627 @default.
- W2897779003 isParatext "false" @default.
- W2897779003 isRetracted "false" @default.
- W2897779003 magId "2897779003" @default.
- W2897779003 workType "article" @default.