Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897792236> ?p ?o ?g. }
- W2897792236 abstract "Magnetic resonance imaging (MRI) methods have been used to detect cerebral anatomical distinction between obsessive-compulsive disorder (OCD) patients and healthy controls (HC). Machine learning approach allows for the possibility of discriminating patients on the individual level. However, few studies have used this automatic technique based on multiple modalities to identify potential biomarkers of OCD. High-resolution structural MRI and diffusion tensor imaging (DTI) data were acquired from 48 OCD patients and 45 well-matched HC. Gray matter volume (GMV), white matter volume (WMV), fractional anisotropy (FA), and mean diffusivity (MD) were extracted as four features were examined using support vector machine (SVM). Ten brain regions of each feature contributed most to the classification were also estimated. Using different algorithms, the classifier achieved accuracies of 72.08, 61.29, 80.65, and 77.42% for GMV, WMV, FA, and MD, respectively. The most discriminative gray matter regions that contributed to the classification were mainly distributed in the orbitofronto-striatal affective circuit, the dorsolateral, prefronto-striatal executive circuit and the cerebellum. For WMV feature and the two feature sets of DTI, the shared regions contributed the most to the discrimination mainly included the uncinate fasciculus, the cingulum in the hippocampus, corticospinal tract, as well as cerebellar peduncle. Based on whole-brain volumetry and DTI images, SVM algorithm revealed high accuracies for distinguishing OCD patients from healthy subjects at the individual level. Computer-aided method is capable of providing accurate diagnostic information and might provide a new perspective for clinical diagnosis of OCD." @default.
- W2897792236 created "2018-10-26" @default.
- W2897792236 creator A5023618497 @default.
- W2897792236 creator A5030209143 @default.
- W2897792236 creator A5043711460 @default.
- W2897792236 creator A5070924512 @default.
- W2897792236 creator A5080162772 @default.
- W2897792236 creator A5080674171 @default.
- W2897792236 creator A5082004215 @default.
- W2897792236 creator A5084968890 @default.
- W2897792236 creator A5086033065 @default.
- W2897792236 creator A5088182744 @default.
- W2897792236 date "2018-10-23" @default.
- W2897792236 modified "2023-10-17" @default.
- W2897792236 title "Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging" @default.
- W2897792236 cites W1097741600 @default.
- W2897792236 cites W1565923763 @default.
- W2897792236 cites W1630817048 @default.
- W2897792236 cites W1715858500 @default.
- W2897792236 cites W1964940342 @default.
- W2897792236 cites W1968126294 @default.
- W2897792236 cites W1969959732 @default.
- W2897792236 cites W1977871877 @default.
- W2897792236 cites W1981203691 @default.
- W2897792236 cites W1988468568 @default.
- W2897792236 cites W1990835015 @default.
- W2897792236 cites W1995571867 @default.
- W2897792236 cites W1997260622 @default.
- W2897792236 cites W2007022499 @default.
- W2897792236 cites W2014574538 @default.
- W2897792236 cites W2019321130 @default.
- W2897792236 cites W2022893964 @default.
- W2897792236 cites W2025663766 @default.
- W2897792236 cites W2028739995 @default.
- W2897792236 cites W2038523955 @default.
- W2897792236 cites W2038646190 @default.
- W2897792236 cites W2040305148 @default.
- W2897792236 cites W2041235071 @default.
- W2897792236 cites W2041435129 @default.
- W2897792236 cites W2058046532 @default.
- W2897792236 cites W2061664457 @default.
- W2897792236 cites W2071881327 @default.
- W2897792236 cites W2088796077 @default.
- W2897792236 cites W2088980803 @default.
- W2897792236 cites W2096158882 @default.
- W2897792236 cites W2098915263 @default.
- W2897792236 cites W2102462556 @default.
- W2897792236 cites W2103717170 @default.
- W2897792236 cites W2104787607 @default.
- W2897792236 cites W2110431535 @default.
- W2897792236 cites W2111531007 @default.
- W2897792236 cites W2120259577 @default.
- W2897792236 cites W2125823313 @default.
- W2897792236 cites W2131999456 @default.
- W2897792236 cites W2138526638 @default.
- W2897792236 cites W2148080251 @default.
- W2897792236 cites W2148828979 @default.
- W2897792236 cites W2152284414 @default.
- W2897792236 cites W2155298532 @default.
- W2897792236 cites W2158698691 @default.
- W2897792236 cites W2160331326 @default.
- W2897792236 cites W2160385588 @default.
- W2897792236 cites W2166758207 @default.
- W2897792236 cites W2167969178 @default.
- W2897792236 cites W2182909100 @default.
- W2897792236 cites W2190763606 @default.
- W2897792236 cites W2262195278 @default.
- W2897792236 cites W2513379788 @default.
- W2897792236 cites W2530751350 @default.
- W2897792236 cites W2554181966 @default.
- W2897792236 cites W2555699120 @default.
- W2897792236 cites W2576110747 @default.
- W2897792236 cites W2588723113 @default.
- W2897792236 cites W2606546398 @default.
- W2897792236 cites W2610976564 @default.
- W2897792236 cites W2693318660 @default.
- W2897792236 cites W2752321242 @default.
- W2897792236 cites W2754690845 @default.
- W2897792236 cites W2768276759 @default.
- W2897792236 cites W2770704336 @default.
- W2897792236 cites W2802143049 @default.
- W2897792236 cites W2886773765 @default.
- W2897792236 cites W2953130175 @default.
- W2897792236 cites W2106763716 @default.
- W2897792236 doi "https://doi.org/10.3389/fpsyt.2018.00524" @default.
- W2897792236 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6206075" @default.
- W2897792236 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30405461" @default.
- W2897792236 hasPublicationYear "2018" @default.
- W2897792236 type Work @default.
- W2897792236 sameAs 2897792236 @default.
- W2897792236 citedByCount "23" @default.
- W2897792236 countsByYear W28977922362019 @default.
- W2897792236 countsByYear W28977922362020 @default.
- W2897792236 countsByYear W28977922362021 @default.
- W2897792236 countsByYear W28977922362022 @default.
- W2897792236 countsByYear W28977922362023 @default.
- W2897792236 crossrefType "journal-article" @default.
- W2897792236 hasAuthorship W2897792236A5023618497 @default.
- W2897792236 hasAuthorship W2897792236A5030209143 @default.
- W2897792236 hasAuthorship W2897792236A5043711460 @default.