Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897795069> ?p ?o ?g. }
- W2897795069 endingPage "1648" @default.
- W2897795069 startingPage "1648" @default.
- W2897795069 abstract "Fractional vegetation cover (FVC) is an essential input parameter for many environmental and ecological models. Recently, several global FVC products have been generated using remote sensing data. The Global LAnd Surface Satellite (GLASS) FVC product, which is generated from Moderate Resolution Imaging Spectroradiometer (MODIS) data, has attained acceptable performance. However, the original MODIS operation design lifespan has been exceeded. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite was designed to be the MODIS successor. Therefore, developing an FVC estimation algorithm for VIIRS data is important for maintaining continuous FVC estimates in case of MODIS failure. In this study, a global FVC estimation algorithm for VIIRS surface reflectance data was proposed based on machine learning methods, which investigated the performances of back propagating neural networks (BPNNs), general regression networks (GRNNs), multivariate adaptive regression splines (MARS), and Gaussian process regression (GPR). The training samples were extracted from the GLASS FVC product and corresponding reconstructed VIIRS surface reflectance in 2013 over the global sampling locations. The VIIRS reflectances of red and near infrared (NIR) bands were the input variables for these machine learning methods. The theoretical performances and independent validation results indicated that the four machine learning methods could achieve similar and reliable FVC estimates. Regarding the FVC estimation accuracy, the GPR method achieved the best performance (R2 = 0.9019, RMSE = 0.0887). The MARS method had the obvious advantage of computational efficiency. Furthermore, the FVC estimates achieved good spatial and temporal continuities. Therefore, the proposed FVC estimation algorithm for VIIRS data can potentially generate reliable global FVC data for related applications." @default.
- W2897795069 created "2018-10-26" @default.
- W2897795069 creator A5009327702 @default.
- W2897795069 creator A5011417699 @default.
- W2897795069 creator A5024645543 @default.
- W2897795069 creator A5053258235 @default.
- W2897795069 creator A5054276054 @default.
- W2897795069 creator A5063493372 @default.
- W2897795069 creator A5063976189 @default.
- W2897795069 creator A5079396291 @default.
- W2897795069 creator A5085883202 @default.
- W2897795069 date "2018-10-16" @default.
- W2897795069 modified "2023-10-18" @default.
- W2897795069 title "Global Fractional Vegetation Cover Estimation Algorithm for VIIRS Reflectance Data Based on Machine Learning Methods" @default.
- W2897795069 cites W1636213942 @default.
- W2897795069 cites W1784657349 @default.
- W2897795069 cites W1909518542 @default.
- W2897795069 cites W1930970760 @default.
- W2897795069 cites W1964615151 @default.
- W2897795069 cites W1966798775 @default.
- W2897795069 cites W1981093066 @default.
- W2897795069 cites W1987442830 @default.
- W2897795069 cites W2000189421 @default.
- W2897795069 cites W2007134419 @default.
- W2897795069 cites W2007342648 @default.
- W2897795069 cites W2013061102 @default.
- W2897795069 cites W2026470773 @default.
- W2897795069 cites W2026608513 @default.
- W2897795069 cites W2043273487 @default.
- W2897795069 cites W2049127695 @default.
- W2897795069 cites W2056087105 @default.
- W2897795069 cites W2068492232 @default.
- W2897795069 cites W2069358120 @default.
- W2897795069 cites W2076196252 @default.
- W2897795069 cites W2097795807 @default.
- W2897795069 cites W2098528582 @default.
- W2897795069 cites W2102201073 @default.
- W2897795069 cites W2109965565 @default.
- W2897795069 cites W2123579413 @default.
- W2897795069 cites W2130269771 @default.
- W2897795069 cites W2136408258 @default.
- W2897795069 cites W2145539952 @default.
- W2897795069 cites W2149723649 @default.
- W2897795069 cites W2150730809 @default.
- W2897795069 cites W2155096269 @default.
- W2897795069 cites W2163886442 @default.
- W2897795069 cites W2166516660 @default.
- W2897795069 cites W2272473773 @default.
- W2897795069 cites W2285717070 @default.
- W2897795069 cites W2338434179 @default.
- W2897795069 cites W2510415821 @default.
- W2897795069 cites W2518972658 @default.
- W2897795069 cites W272602280 @default.
- W2897795069 cites W2750302842 @default.
- W2897795069 cites W61452412 @default.
- W2897795069 doi "https://doi.org/10.3390/rs10101648" @default.
- W2897795069 hasPublicationYear "2018" @default.
- W2897795069 type Work @default.
- W2897795069 sameAs 2897795069 @default.
- W2897795069 citedByCount "18" @default.
- W2897795069 countsByYear W28977950692019 @default.
- W2897795069 countsByYear W28977950692020 @default.
- W2897795069 countsByYear W28977950692021 @default.
- W2897795069 countsByYear W28977950692022 @default.
- W2897795069 countsByYear W28977950692023 @default.
- W2897795069 crossrefType "journal-article" @default.
- W2897795069 hasAuthorship W2897795069A5009327702 @default.
- W2897795069 hasAuthorship W2897795069A5011417699 @default.
- W2897795069 hasAuthorship W2897795069A5024645543 @default.
- W2897795069 hasAuthorship W2897795069A5053258235 @default.
- W2897795069 hasAuthorship W2897795069A5054276054 @default.
- W2897795069 hasAuthorship W2897795069A5063493372 @default.
- W2897795069 hasAuthorship W2897795069A5063976189 @default.
- W2897795069 hasAuthorship W2897795069A5079396291 @default.
- W2897795069 hasAuthorship W2897795069A5085883202 @default.
- W2897795069 hasBestOaLocation W28977950691 @default.
- W2897795069 hasConcept C11413529 @default.
- W2897795069 hasConcept C119857082 @default.
- W2897795069 hasConcept C127313418 @default.
- W2897795069 hasConcept C127413603 @default.
- W2897795069 hasConcept C146978453 @default.
- W2897795069 hasConcept C19269812 @default.
- W2897795069 hasConcept C2777701342 @default.
- W2897795069 hasConcept C39432304 @default.
- W2897795069 hasConcept C41008148 @default.
- W2897795069 hasConcept C62649853 @default.
- W2897795069 hasConceptScore W2897795069C11413529 @default.
- W2897795069 hasConceptScore W2897795069C119857082 @default.
- W2897795069 hasConceptScore W2897795069C127313418 @default.
- W2897795069 hasConceptScore W2897795069C127413603 @default.
- W2897795069 hasConceptScore W2897795069C146978453 @default.
- W2897795069 hasConceptScore W2897795069C19269812 @default.
- W2897795069 hasConceptScore W2897795069C2777701342 @default.
- W2897795069 hasConceptScore W2897795069C39432304 @default.
- W2897795069 hasConceptScore W2897795069C41008148 @default.
- W2897795069 hasConceptScore W2897795069C62649853 @default.
- W2897795069 hasIssue "10" @default.
- W2897795069 hasLocation W28977950691 @default.