Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897795150> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2897795150 endingPage "268" @default.
- W2897795150 startingPage "257" @default.
- W2897795150 abstract "During an epidemic crisis, medical image analysis namely microscopic analyses are made to confirm or not the existence of the epidemic pathogen in suspected cases. Pathogen are all infectious agents such as a virus, bacterium, protozoa, prion etc. However, there is often a lack of specialists in the handling of microscopes, hence allowing the need to make the microscopic analysis abroad. This results in a considerable loss of time and in the meantime, the epidemic continues to spread. To save time in the analysis of samples, we propose to make the future microscopes more intelligent so that they will be able to indicate by themselves the existence or not of the pathogen of an epidemic in a sample. To have a smart microscope, we propose a methodology based on efficient Convolution Neural Network (CNN) architecture in order to classify epidemic pathogen with five deep learning phases: (1) Training dataset of provided images (2) CNN Training (3) Testing data preparation (4) CNN generated model on testing data and finally (5) Evaluation of images classified. The resulted classification process can be integrated in a mobile computing solution on future microscopes. CNN can improve the accuracy in pathogens diagnosis that are focused on hand-tuned feature extraction implying some human mistakes. For our study, we consider cholera and malaria epidemics for microscopic images classification with a relevant CNN, respectively Vibrio cholerae images and Plasmodium falciparum images. Image classification is the task of taking an input image and outputting a class or a probability of classes that best describes the image. Interesting results have been obtained from the CNN model generated achieving the classification accuracy of 94%, with 200 Vibrio cholera images and 200 Plasmodium falciparum images for training dataset and 80 images for testing data. Although this document addresses the classification of epidemic pathogen images using a CNN model, the underlying principles apply to the other fields of science and technology, because of its performance and its capability to handle more layers than the previous traditional neural networks." @default.
- W2897795150 created "2018-10-26" @default.
- W2897795150 creator A5023990143 @default.
- W2897795150 creator A5027935882 @default.
- W2897795150 creator A5030041935 @default.
- W2897795150 date "2018-11-01" @default.
- W2897795150 modified "2023-10-17" @default.
- W2897795150 title "Deep convolution neural network for image recognition" @default.
- W2897795150 cites W1980712697 @default.
- W2897795150 cites W2032387080 @default.
- W2897795150 cites W2076063813 @default.
- W2897795150 cites W2117539524 @default.
- W2897795150 cites W2125399374 @default.
- W2897795150 cites W2136922672 @default.
- W2897795150 cites W2176950688 @default.
- W2897795150 cites W2187664987 @default.
- W2897795150 cites W2253590344 @default.
- W2897795150 cites W2261689926 @default.
- W2897795150 cites W2425776900 @default.
- W2897795150 cites W2470803522 @default.
- W2897795150 cites W2492586371 @default.
- W2897795150 cites W2533095659 @default.
- W2897795150 cites W2592929672 @default.
- W2897795150 cites W2604338790 @default.
- W2897795150 cites W2605288195 @default.
- W2897795150 cites W2731165298 @default.
- W2897795150 cites W2792602544 @default.
- W2897795150 cites W2919115771 @default.
- W2897795150 cites W4252450725 @default.
- W2897795150 doi "https://doi.org/10.1016/j.ecoinf.2018.10.002" @default.
- W2897795150 hasPublicationYear "2018" @default.
- W2897795150 type Work @default.
- W2897795150 sameAs 2897795150 @default.
- W2897795150 citedByCount "206" @default.
- W2897795150 countsByYear W28977951502019 @default.
- W2897795150 countsByYear W28977951502020 @default.
- W2897795150 countsByYear W28977951502021 @default.
- W2897795150 countsByYear W28977951502022 @default.
- W2897795150 countsByYear W28977951502023 @default.
- W2897795150 crossrefType "journal-article" @default.
- W2897795150 hasAuthorship W2897795150A5023990143 @default.
- W2897795150 hasAuthorship W2897795150A5027935882 @default.
- W2897795150 hasAuthorship W2897795150A5030041935 @default.
- W2897795150 hasBestOaLocation W28977951502 @default.
- W2897795150 hasConcept C108583219 @default.
- W2897795150 hasConcept C115961682 @default.
- W2897795150 hasConcept C142724271 @default.
- W2897795150 hasConcept C153180895 @default.
- W2897795150 hasConcept C154945302 @default.
- W2897795150 hasConcept C31972630 @default.
- W2897795150 hasConcept C41008148 @default.
- W2897795150 hasConcept C45347329 @default.
- W2897795150 hasConcept C50644808 @default.
- W2897795150 hasConcept C52622490 @default.
- W2897795150 hasConcept C67649825 @default.
- W2897795150 hasConcept C71924100 @default.
- W2897795150 hasConcept C81363708 @default.
- W2897795150 hasConcept C9417928 @default.
- W2897795150 hasConceptScore W2897795150C108583219 @default.
- W2897795150 hasConceptScore W2897795150C115961682 @default.
- W2897795150 hasConceptScore W2897795150C142724271 @default.
- W2897795150 hasConceptScore W2897795150C153180895 @default.
- W2897795150 hasConceptScore W2897795150C154945302 @default.
- W2897795150 hasConceptScore W2897795150C31972630 @default.
- W2897795150 hasConceptScore W2897795150C41008148 @default.
- W2897795150 hasConceptScore W2897795150C45347329 @default.
- W2897795150 hasConceptScore W2897795150C50644808 @default.
- W2897795150 hasConceptScore W2897795150C52622490 @default.
- W2897795150 hasConceptScore W2897795150C67649825 @default.
- W2897795150 hasConceptScore W2897795150C71924100 @default.
- W2897795150 hasConceptScore W2897795150C81363708 @default.
- W2897795150 hasConceptScore W2897795150C9417928 @default.
- W2897795150 hasLocation W28977951501 @default.
- W2897795150 hasLocation W28977951502 @default.
- W2897795150 hasLocation W28977951503 @default.
- W2897795150 hasLocation W28977951504 @default.
- W2897795150 hasLocation W28977951505 @default.
- W2897795150 hasOpenAccess W2897795150 @default.
- W2897795150 hasPrimaryLocation W28977951501 @default.
- W2897795150 hasRelatedWork W2279398222 @default.
- W2897795150 hasRelatedWork W2731899572 @default.
- W2897795150 hasRelatedWork W3116150086 @default.
- W2897795150 hasRelatedWork W3133861977 @default.
- W2897795150 hasRelatedWork W3156786002 @default.
- W2897795150 hasRelatedWork W4200173597 @default.
- W2897795150 hasRelatedWork W4299822940 @default.
- W2897795150 hasRelatedWork W4312417841 @default.
- W2897795150 hasRelatedWork W4321369474 @default.
- W2897795150 hasRelatedWork W4366492315 @default.
- W2897795150 hasVolume "48" @default.
- W2897795150 isParatext "false" @default.
- W2897795150 isRetracted "false" @default.
- W2897795150 magId "2897795150" @default.
- W2897795150 workType "article" @default.