Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897800543> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2897800543 abstract "Iris recognition has been an interesting subject for many research studies in the last two decades and has raised many challenges for the researchers. One new and interesting challenge in the iris studies is gender recognition using iris images. Gender classification can be applied to reduce processing time of the identification process. On the other hand, it can be used in applications such as access control systems, and gender-based marketing and so on. To the best of our knowledge, only a few numbers of studies are conducted on gender recognition through analysis of iris images. Considering the importance of this research area and its commercial applications, it is highly essential for researchers to make use of efficient color features in their algorithms which necessitates the production of color iris image databases. The present study introduces an iris image database for gender classification and proposes a new gender classification algorithm for its evaluation. The database consists of iris images taken from 720 subjects including 370 females and 350 males in university students. For each student, more than 6 images were taken from his/her both left and right eyes. After examining the images, 3 images from the left eye and 3 images from the right eye were selected among the most appropriate images and were included in the database. All 4320 images from this database were taken under the same condition and by the same color camera. Finally, the quality and the efficiency of the introduced database are evaluated using a new method that extract Zernike moments on spectral features and two well-known classifiers, namely, SVM and KNN. The results revealed that there is a significant improvement in gender classification compared with the similar databases." @default.
- W2897800543 created "2018-10-26" @default.
- W2897800543 creator A5027637890 @default.
- W2897800543 creator A5075320263 @default.
- W2897800543 creator A5086157999 @default.
- W2897800543 date "2018-06-01" @default.
- W2897800543 modified "2023-10-18" @default.
- W2897800543 title "CVBL IRIS Gender Classification Database Image Processing and Biometric Research, Computer Vision and Biometric Laboratory (CVBL)" @default.
- W2897800543 cites W1974821667 @default.
- W2897800543 cites W1998419336 @default.
- W2897800543 cites W2052294358 @default.
- W2897800543 cites W2061648605 @default.
- W2897800543 cites W2077265636 @default.
- W2897800543 cites W2161087606 @default.
- W2897800543 cites W2320355672 @default.
- W2897800543 cites W2410041326 @default.
- W2897800543 doi "https://doi.org/10.1109/icivc.2018.8492757" @default.
- W2897800543 hasPublicationYear "2018" @default.
- W2897800543 type Work @default.
- W2897800543 sameAs 2897800543 @default.
- W2897800543 citedByCount "6" @default.
- W2897800543 countsByYear W28978005432021 @default.
- W2897800543 countsByYear W28978005432022 @default.
- W2897800543 crossrefType "proceedings-article" @default.
- W2897800543 hasAuthorship W2897800543A5027637890 @default.
- W2897800543 hasAuthorship W2897800543A5075320263 @default.
- W2897800543 hasAuthorship W2897800543A5086157999 @default.
- W2897800543 hasConcept C112356035 @default.
- W2897800543 hasConcept C115961682 @default.
- W2897800543 hasConcept C116834253 @default.
- W2897800543 hasConcept C153180895 @default.
- W2897800543 hasConcept C154945302 @default.
- W2897800543 hasConcept C184297639 @default.
- W2897800543 hasConcept C2779503344 @default.
- W2897800543 hasConcept C31972630 @default.
- W2897800543 hasConcept C41008148 @default.
- W2897800543 hasConcept C59822182 @default.
- W2897800543 hasConcept C77088390 @default.
- W2897800543 hasConcept C86803240 @default.
- W2897800543 hasConcept C9417928 @default.
- W2897800543 hasConceptScore W2897800543C112356035 @default.
- W2897800543 hasConceptScore W2897800543C115961682 @default.
- W2897800543 hasConceptScore W2897800543C116834253 @default.
- W2897800543 hasConceptScore W2897800543C153180895 @default.
- W2897800543 hasConceptScore W2897800543C154945302 @default.
- W2897800543 hasConceptScore W2897800543C184297639 @default.
- W2897800543 hasConceptScore W2897800543C2779503344 @default.
- W2897800543 hasConceptScore W2897800543C31972630 @default.
- W2897800543 hasConceptScore W2897800543C41008148 @default.
- W2897800543 hasConceptScore W2897800543C59822182 @default.
- W2897800543 hasConceptScore W2897800543C77088390 @default.
- W2897800543 hasConceptScore W2897800543C86803240 @default.
- W2897800543 hasConceptScore W2897800543C9417928 @default.
- W2897800543 hasLocation W28978005431 @default.
- W2897800543 hasOpenAccess W2897800543 @default.
- W2897800543 hasPrimaryLocation W28978005431 @default.
- W2897800543 hasRelatedWork W1568781413 @default.
- W2897800543 hasRelatedWork W2127515548 @default.
- W2897800543 hasRelatedWork W2127677160 @default.
- W2897800543 hasRelatedWork W2161834109 @default.
- W2897800543 hasRelatedWork W2204049424 @default.
- W2897800543 hasRelatedWork W2370714421 @default.
- W2897800543 hasRelatedWork W276445467 @default.
- W2897800543 hasRelatedWork W2921027298 @default.
- W2897800543 hasRelatedWork W3008151551 @default.
- W2897800543 hasRelatedWork W2475017321 @default.
- W2897800543 isParatext "false" @default.
- W2897800543 isRetracted "false" @default.
- W2897800543 magId "2897800543" @default.
- W2897800543 workType "article" @default.