Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897811458> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2897811458 endingPage "24" @default.
- W2897811458 startingPage "15" @default.
- W2897811458 abstract "Machine learning techniques have been used successfully in several areas such as banking and finance. These techniques are used mainly for prediction, classification and partitioning data into different groups according to a certain common characteristic. In this work, we are interested in machine learning techniques for credit scoring and bankruptcy prediction in finance and banking. We evaluate and compare a range of machine learning techniques on several datasets issued from banks and financial institutions where the aim is to select the most appropriate methods suitable for each dataset. We use several metrics to evaluate the performance of the obtained models. The empirical studies are conducted on German, Australian, Japanese, Polish, Indian Qualitative Bankruptcy and Taiwan datasets. Also, we consider the huge “Give Me Some Credit dataset”. The machine learning methods produce scores for applicants and companies and help a lot in the decision making. In other words, these methods permit us to distinguish between bad and good applicants or companies. The numerical study shows that there is no method able to consistently outperform the others on all the datasets. Also, there are significant differences between the studied methods on some datasets. For German and Give Me Some Credit datasets, the Bayes net method is able to produce good scores compared to the others studied methods. The LogitBoost method is competitive on both Polish and Australian datasets, while AdaBoost method is most appropriate for Japanese dataset. For Taiwan dataset, Random Forest method gives the best results compared to the other considered techniques. However, on Indian Qualitative Bankruptcy dataset, almost the methods are comparable due to the nature of this dataset." @default.
- W2897811458 created "2018-10-26" @default.
- W2897811458 creator A5046314899 @default.
- W2897811458 creator A5091867094 @default.
- W2897811458 date "2020-05-08" @default.
- W2897811458 modified "2023-09-27" @default.
- W2897811458 title "Appropriate machine learning techniques for credit scoring and bankruptcy prediction in banking and finance: A comparative study" @default.
- W2897811458 cites W1673066967 @default.
- W2897811458 cites W1817561967 @default.
- W2897811458 cites W1988790447 @default.
- W2897811458 cites W2005510983 @default.
- W2897811458 cites W2023846550 @default.
- W2897811458 cites W2024046085 @default.
- W2897811458 cites W2067223851 @default.
- W2897811458 cites W2086841270 @default.
- W2897811458 cites W2088048599 @default.
- W2897811458 cites W2128420091 @default.
- W2897811458 cites W2132166479 @default.
- W2897811458 cites W2158068969 @default.
- W2897811458 cites W2168123127 @default.
- W2897811458 cites W2801727166 @default.
- W2897811458 cites W39040241 @default.
- W2897811458 cites W4212883601 @default.
- W2897811458 cites W4233045210 @default.
- W2897811458 doi "https://doi.org/10.3233/rda-180051" @default.
- W2897811458 hasPublicationYear "2020" @default.
- W2897811458 type Work @default.
- W2897811458 sameAs 2897811458 @default.
- W2897811458 citedByCount "10" @default.
- W2897811458 countsByYear W28978114582019 @default.
- W2897811458 countsByYear W28978114582020 @default.
- W2897811458 countsByYear W28978114582021 @default.
- W2897811458 countsByYear W28978114582022 @default.
- W2897811458 countsByYear W28978114582023 @default.
- W2897811458 crossrefType "journal-article" @default.
- W2897811458 hasAuthorship W2897811458A5046314899 @default.
- W2897811458 hasAuthorship W2897811458A5091867094 @default.
- W2897811458 hasConcept C10138342 @default.
- W2897811458 hasConcept C119857082 @default.
- W2897811458 hasConcept C12267149 @default.
- W2897811458 hasConcept C141404830 @default.
- W2897811458 hasConcept C144133560 @default.
- W2897811458 hasConcept C154775046 @default.
- W2897811458 hasConcept C154945302 @default.
- W2897811458 hasConcept C166957645 @default.
- W2897811458 hasConcept C2777388754 @default.
- W2897811458 hasConcept C41008148 @default.
- W2897811458 hasConcept C504631918 @default.
- W2897811458 hasConcept C52001869 @default.
- W2897811458 hasConcept C95457728 @default.
- W2897811458 hasConceptScore W2897811458C10138342 @default.
- W2897811458 hasConceptScore W2897811458C119857082 @default.
- W2897811458 hasConceptScore W2897811458C12267149 @default.
- W2897811458 hasConceptScore W2897811458C141404830 @default.
- W2897811458 hasConceptScore W2897811458C144133560 @default.
- W2897811458 hasConceptScore W2897811458C154775046 @default.
- W2897811458 hasConceptScore W2897811458C154945302 @default.
- W2897811458 hasConceptScore W2897811458C166957645 @default.
- W2897811458 hasConceptScore W2897811458C2777388754 @default.
- W2897811458 hasConceptScore W2897811458C41008148 @default.
- W2897811458 hasConceptScore W2897811458C504631918 @default.
- W2897811458 hasConceptScore W2897811458C52001869 @default.
- W2897811458 hasConceptScore W2897811458C95457728 @default.
- W2897811458 hasIssue "1-2" @default.
- W2897811458 hasLocation W28978114581 @default.
- W2897811458 hasOpenAccess W2897811458 @default.
- W2897811458 hasPrimaryLocation W28978114581 @default.
- W2897811458 hasRelatedWork W1987859285 @default.
- W2897811458 hasRelatedWork W2509892558 @default.
- W2897811458 hasRelatedWork W2787191226 @default.
- W2897811458 hasRelatedWork W3003568662 @default.
- W2897811458 hasRelatedWork W3033216196 @default.
- W2897811458 hasRelatedWork W3197622907 @default.
- W2897811458 hasRelatedWork W3203246408 @default.
- W2897811458 hasRelatedWork W4205958290 @default.
- W2897811458 hasRelatedWork W4362496921 @default.
- W2897811458 hasRelatedWork W4375930479 @default.
- W2897811458 hasVolume "8" @default.
- W2897811458 isParatext "false" @default.
- W2897811458 isRetracted "false" @default.
- W2897811458 magId "2897811458" @default.
- W2897811458 workType "article" @default.